IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p1138-1147.html
   My bibliography  Save this article

Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture

Author

Listed:
  • Best, Thom
  • Finney, Karen N.
  • Ingham, Derek B.
  • Pourkashanian, Mohamed

Abstract

Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO2 enhancement could therefore result in significant efficiency gains for the capture plant.

Suggested Citation

  • Best, Thom & Finney, Karen N. & Ingham, Derek B. & Pourkashanian, Mohamed, 2016. "Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture," Energy, Elsevier, vol. 115(P1), pages 1138-1147.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1138-1147
    DOI: 10.1016/j.energy.2016.09.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216313160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hailong & Ditaranto, Mario & Berstad, David, 2011. "Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture," Energy, Elsevier, vol. 36(2), pages 1124-1133.
    2. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    2. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    3. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    4. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    5. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    6. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    7. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2019. "Study of combustion in CO2-Capturing semi-closed Brayton cycle conditions," Energy, Elsevier, vol. 166(C), pages 1276-1290.
    8. Pappa, Alessio & Cordier, Marie & Bénard, Pierre & Bricteux, Laurent & De Paepe, Ward, 2022. "How do water and CO2 impact the stability and emissions of the combustion in a micro gas turbine? — A Large Eddy Simulations comparison," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    2. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    6. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    7. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    8. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    9. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    10. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    11. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    12. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.
    13. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    14. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    15. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    16. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    17. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    18. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.
    19. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    20. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1138-1147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.