IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp612-619.html
   My bibliography  Save this article

Higher heating value determination of wheat straw from Baja California, Mexico

Author

Listed:
  • Montero, Gisela
  • Coronado, Marcos A.
  • Torres, Ricardo
  • Jaramillo, Beatriz E.
  • García, Conrado
  • Stoytcheva, Margarita
  • Vázquez, Ana M.
  • León, José A.
  • Lambert, Alejandro A.
  • Valenzuela, Edgar

Abstract

Wheat is one of the most cultivated grains internationally. In 2012, Mexico allocated 578,836 ha to this crop. In the Valley of Mexicali, Baja California, Mexico, wheat is the main crop with 72,206 ha in 2012. The crop generates about 527,103 t/year of wheat straw. At the end of each harvest season, most of this residue is open burned, without productive use, causing environmental pollution. However, due to its high energy content, wheat straw can be used for electricity generation or biofuels production, among others. In this paper, the results of the physicochemical characterization of wheat straw Triticum aestivum from Baja California are presented. This characterization includes the following tests with their results. The analysis of chemical composition: 57.09% cellulose, 16.81% hemicellulose, and 19.10% lignin. The proximate analysis: 64.42% volatile matter, 19.49% fixed carbon and 16.09% ash. The ultimate analysis: 37.20% C, 5.57% H, 1.14% N, 0.20% S and 37.30% O. The experimental higher heating of wheat straw was 14.86 MJ/kg. Higher heating value estimations by proximate and ultimate analysis were 15.71 MJ/kg and 14.59 MJ/kg, respectively. Based on the experimental results, the lower heating value was 14.5 MJ/kg.

Suggested Citation

  • Montero, Gisela & Coronado, Marcos A. & Torres, Ricardo & Jaramillo, Beatriz E. & García, Conrado & Stoytcheva, Margarita & Vázquez, Ana M. & León, José A. & Lambert, Alejandro A. & Valenzuela, Edgar, 2016. "Higher heating value determination of wheat straw from Baja California, Mexico," Energy, Elsevier, vol. 109(C), pages 612-619.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:612-619
    DOI: 10.1016/j.energy.2016.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ke & Zhang, Junbiao & Zeng, Yangmei, 2018. "Rural households' willingness to accept compensation for energy utilization of crop straw in China," Energy, Elsevier, vol. 165(PA), pages 562-571.
    2. Shaghaleh, Hiba & Xu, Xu & Liu, He & Wang, Shifa & Alhaj Hamoud, Yousef & Dong, Fuhao & Luo, Jinyue, 2019. "The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis," Energy, Elsevier, vol. 176(C), pages 195-210.
    3. Szubel, Mateusz & Filipowicz, Mariusz & Matras, Beata & Podlasek, Szymon, 2018. "Air manifolds for straw-fired batch boilers – Experimental and numerical methods for improvement of selected operation parameters," Energy, Elsevier, vol. 162(C), pages 1003-1015.
    4. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    5. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    6. Marcos A. Coronado & Gisela Montero & Daniela G. Montes & Benjamín Valdez-Salas & José R. Ayala & Conrado García & Mónica Carrillo & José A. León & Abigail Moreno, 2020. "Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    7. Shangdiar, Sumarlin & Lin, Yuan-Chung & Cheng, Pei-Cheng & Chou, Feng-Chih & Wu, Wen-Ding, 2021. "Development of biochar from the refuse derived fuel (RDF) through organic / inorganic sludge mixed with rice straw and coconut shell," Energy, Elsevier, vol. 215(PB).
    8. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2018. "Ammonia production from black liquor gasification and co-gasification with pulp and waste sludges: A techno-economic assessment," Energy, Elsevier, vol. 151(C), pages 133-143.
    9. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    10. Liu, Zhongyi & Jin, Jing & Zheng, Liangqian & Zhang, Ruipu & Dong, Bo & Liang, Guowei & Zhai, Zhongyuan, 2023. "Adhesion strength of straw biomass ash: Effect of dolomite additive," Energy, Elsevier, vol. 262(PA).
    11. Zheng, Liangqian & Jin, Jing & Zhang, Ruipu & Liu, Zhongyi & Zhang, Li, 2023. "Understanding the effect of dolomite additive on corrosion characteristics of straw biomass ash through experiment study and molecular dynamics calculations," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    4. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    5. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    6. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.
    7. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    8. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    9. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    10. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    11. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    12. Erić, Aleksandar & Cvetinović, Dejan & Milutinović, Nada & Škobalj, Predrag & Bakić, Vukman, 2022. "Combined parametric modelling of biomass devolatilisation process," Renewable Energy, Elsevier, vol. 193(C), pages 13-22.
    13. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    14. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    15. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    16. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    17. Karlsson, Hanna & Ahlgren, Serina & Strid, Ingrid & Hansson, Per-Anders, 2015. "Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications," Agricultural Systems, Elsevier, vol. 141(C), pages 138-148.
    18. Hoang-Tuong Nguyen Hao & Obulisamy Parthiba Karthikeyan & Kirsten Heimann, 2015. "Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels," Energies, MDPI, vol. 8(7), pages 1-15, June.
    19. McKechnie, Jon & Pourbafrani, Mohammad & Saville, Bradley A. & MacLean, Heather L., 2015. "Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol," Renewable Energy, Elsevier, vol. 76(C), pages 726-734.
    20. Md Sumon Reza & Juntakan Taweekun & Shammya Afroze & Shohel Ahmed Siddique & Md. Shahinoor Islam & Chongqing Wang & Abul K. Azad, 2023. "Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy," Sustainability, MDPI, vol. 15(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:612-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.