IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v100y2016icp137-144.html
   My bibliography  Save this article

Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics

Author

Listed:
  • Huang, Yu-Fong
  • Chiueh, Pei-Te
  • Kuan, Wen-Hui
  • Lo, Shang-Lien

Abstract

Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bioenergy and green materials by using microwave pyrolysis. In this study, microwave pyrolysis of seven biomass feedstocks (corn stover, rice straw, rice husk, sugarcane bagasse, sugarcane peel, coffee grounds, and bamboo) was studied. The maximum temperature of microwave pyrolysis was highly correlated with the combustible content of the feedstocks. The influence of microwave power level on both maximum temperature and heating rate was substantial. Either maximum temperature or heating rate had a linear relationship with microwave power level. However, there was a breakpoint at a power level of 250 W. Compared with conventional pyrolysis, microwave pyrolysis was faster and needed less input energy. Microwave pyrolysis provided higher weight losses than conventional pyrolysis, and this difference was more substantial at lower temperatures. Kinetic parameters of microwave pyrolysis at lower and higher microwave power levels were different. Reaction rates at higher microwave power levels can be higher than those at lower power levels by approximately one order of magnitude. Compared with conventional pyrolysis, the rate constant of microwave pyrolysis was much higher, and its activation energy and pre-exponential factor were much lower.

Suggested Citation

  • Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
  • Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:137-144
    DOI: 10.1016/j.energy.2016.01.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Appleton, T.J. & Colder, R.I. & Kingman, S.W. & Lowndes, I.S. & Read, A.G., 2005. "Microwave technology for energy-efficient processing of waste," Applied Energy, Elsevier, vol. 81(1), pages 85-113, May.
    3. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    2. Shi, Xiaopeng & Li, Pan & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Chang, Chun & Pang, Shusheng, 2022. "Enhancement of the production of aromatics and bio-syngas from microwave ex-situ pyrolysis based on Zn/Zr modified biochar and multi-catalysts," Energy, Elsevier, vol. 261(PB).
    3. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Ding, Yanming & Zhang, Juan & He, Qize & Huang, Biqing & Mao, Shaohua, 2019. "The application and validity of various reaction kinetic models on woody biomass pyrolysis," Energy, Elsevier, vol. 179(C), pages 784-791.
    5. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    6. Tian, Yeshun & Zhou, Xing & Wang, Chunyan & Zhou, Ping & Wang, Wenlong & Song, Zhanlong & Zhao, Xiqiang, 2022. "Desulfurization characteristics and mechanism of iron oxide-modified bio-carbon materials," Energy, Elsevier, vol. 258(C).
    7. Ma, Rui & Sun, Shichang & Geng, Haihong & Fang, Lin & Zhang, Peixin & Zhang, Xianghua, 2018. "Study on the characteristics of microwave pyrolysis of high-ash sludge, including the products, yields, and energy recovery efficiencies," Energy, Elsevier, vol. 144(C), pages 515-525.
    8. Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
    9. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
    10. Nallagatla Vinod Kumar & Gajanan L. Sawargaonkar & C. Sudha Rani & Ajay Singh & T. Ram Prakash & S. Triveni & Prasad J. Kamdi & Rajesh Pasumarthi & Rayapati Karthik & Bathula Venkatesh, 2023. "Comparative Analysis of Pigeonpea Stalk Biochar Characteristics and Energy Use under Different Biochar Production Methods," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    11. Wan Mahari, Wan Adibah & Kee, Seng Hon & Foong, Shin Ying & Amelia, Tan Suet May & Bhubalan, Kesaven & Man, Mustafa & Yang, YaFeng & Ong, Hwai Chyuan & Vithanage, Meththika & Lam, Su Shiung & Sonne, C, 2022. "Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Kouhi, Masoumeh & Shams, Kayghobad, 2019. "Bulk features of catalytic co-pyrolysis of sugarcane bagasse and a hydrogen-rich waste: The case of waste heavy paraffin," Renewable Energy, Elsevier, vol. 140(C), pages 970-982.
    13. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    14. He, Lu & Ma, Yue & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2022. "The heating performance and kinetic behaviour of oil shale during microwave pyrolysis," Energy, Elsevier, vol. 244(PB).
    15. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    16. Mirosław Kwiatkowski, 2021. "Computer Analysis of the Effects of Time and Gas Atmosphere of the Chemical Activation on the Development of the Porous Structure of Activated Carbons Derived from Oil Palm Shell," Energies, MDPI, vol. 14(19), pages 1-10, September.
    17. Eleonora Bottani & Letizia Tebaldi & Andrea Volpi, 2019. "The Role of ICT in Supporting Spent Coffee Grounds Collection and Valorization: A Quantitative Assessment," Sustainability, MDPI, vol. 11(23), pages 1-44, November.
    18. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    19. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Subhash Chandra & Isha Medha & Ashwani Kumar Tiwari, 2023. "The Role of Modified Biochar for the Remediation of Coal Mining-Impacted Contaminated Soil: A Review," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    21. Samal, Biswajit & Vanapalli, Kumar Raja & Dubey, Brajesh Kumar & Bhattacharya, Jayanta & Chandra, Subhash & Medha, Isha, 2021. "Influence of process parameters on thermal characteristics of char from co-pyrolysis of eucalyptus biomass and polystyrene: Its prospects as a solid fuel," Energy, Elsevier, vol. 232(C).
    22. Hoang Chinh Nguyen & Fu-Ming Wang & Kim Khue Dinh & Thanh Truc Pham & Horng-Yi Juan & Nguyen Phuong Nguyen & Hwai Chyuan Ong & Chia-Hung Su, 2020. "Microwave-Assisted Noncatalytic Esterification of Fatty Acid for Biodiesel Production: A Kinetic Study," Energies, MDPI, vol. 13(9), pages 1-15, May.
    23. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2015. "Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis," Energy, Elsevier, vol. 89(C), pages 974-981.
    2. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    3. Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
    4. El Khaled, D. & Novas, N. & Gázquez, J.A. & García, R.M. & Manzano-Agugliaro, F., 2016. "Alcohols and alcohols mixtures as liquid biofuels: A review of dielectric properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 556-571.
    5. Huang, Yu-Fong & Sung, Hsuan-Te & Chiueh, Pei-Te & Lo, Shang-Lien, 2016. "Co-torrefaction of sewage sludge and leucaena by using microwave heating," Energy, Elsevier, vol. 116(P1), pages 1-7.
    6. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    8. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    9. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    10. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    11. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    12. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    13. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    14. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    15. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    16. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    17. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    18. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    19. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 288-305.
    20. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:100:y:2016:i:c:p:137-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.