IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i11p3417-3424.html
   My bibliography  Save this article

Carob pod as a feedstock for the production of bioethanol in Mediterranean areas

Author

Listed:
  • Sánchez, S.
  • Lozano, L.J.
  • Godínez, C.
  • Juan, D.
  • Pérez, A.
  • Hernández, F.J.

Abstract

There is a growing interest worldwide to find out new and cheap carbohydrate sources for production of bioethanol. In this context, carob pod (Ceratonia siliqua) is proposed as an economical source for bioethanol production, especially, in arid regions. The carob tree is an evergreen shrub native to the Mediterranean region, cultivated for its edible seed pods and it is currently being reemphasised as an alternative in dryland areas, because no carbon-enriched lands are necessary. In this work, the global process of ethanol production from carob pod was studied. In a first stage, aqueous extraction of sugars from the pod was conducted, achieving very high yields (>99%) in a short period of time. The process was followed by acid or alkaline hydrolysis of washed pod at different operating conditions, the best results (R = 38.20%) being reached with sulphuric acid (2% v/v) at 90 °C, using a L/S (liquid/solid) ratio of 7.5 and shaking at 700 rpm for 420 min. After that, fermentation of hydrolysates were tested at 30 °C, 125 rpm, 200 g/L of sugars and 15 g/L of yeast with three different kinds of yeasts. In these conditions a maximum of 95 g/L of ethanol was obtained after 24 h. Finally, the distillation and dehydration of water-bioethanol mixtures was analyzed using the chemical process simulation software CHEMCAD with the aim of estimate the energy requirements of the process.

Suggested Citation

  • Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3417-3424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00218-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    3. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    2. Mazaheri, Davood & Shojaosadati, Seyed Abbas & Mousavi, Seyyed Mohammad & Hejazi, Parisa & Saharkhiz, Saeed, 2012. "Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis," Applied Energy, Elsevier, vol. 99(C), pages 372-378.
    3. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    4. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    5. Rosa Mahtout & Víctor Manuel Ortiz-Martínez & María José Salar-García & Isabel Gracia & Francisco José Hernández-Fernández & Antonia Pérez de los Ríos & Farid Zaidia & Sergio Sanchez-Segado & Luis Jav, 2018. "Algerian Carob Tree Products: A Comprehensive Valorization Analysis and Future Prospects," Sustainability, MDPI, vol. 10(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    2. Buresová, Iva & Hrivna, Ludek, 2011. "Effect of wheat gluten proteins on bioethanol yield from grain," Applied Energy, Elsevier, vol. 88(4), pages 1205-1210, April.
    3. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    4. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
    5. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    6. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    7. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    8. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    9. Hoang-Tuong Nguyen Hao & Obulisamy Parthiba Karthikeyan & Kirsten Heimann, 2015. "Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels," Energies, MDPI, vol. 8(7), pages 1-15, June.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    12. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    13. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    15. Forster-Carneiro, T. & Berni, M.D. & Dorileo, I.L. & Rostagno, M.A., 2013. "Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 78-88.
    16. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    17. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    18. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    19. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    20. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3417-3424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.