IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp762-767.html
   My bibliography  Save this article

The building process of single-family houses and the embeddedness (or disembeddedness) of energy

Author

Listed:
  • Palm, Jenny

Abstract

People building their own houses have, at least theoretically, substantial autonomy when choosing, for example, a heating system and windows. In this article, focus is on the process of building new single-family houses and how energy efficiency and energy-efficient technology are incorporated into the building process. The conclusions emphasize energy as only one factor in housing purchase decisions. It is a big challenge to make low-energy building important to consumers. Consumer preferences for new products are unlikely to fully develop unless individuals have the opportunity to interact with them. It is difficult for consumers to know what to ask for if they lack experience of energy-efficient technologies. In the studied cases, the building codes and established standards became extremely decisive for how energy issues were included in the process. There is a need to change the design of incentives so as to make the least energy-efficient choice the most expensive. The most energy-efficient solution should be standard, and if the buyer wants to depart from that standard and build using less energy-efficient construction, then that should cost more.

Suggested Citation

  • Palm, Jenny, 2013. "The building process of single-family houses and the embeddedness (or disembeddedness) of energy," Energy Policy, Elsevier, vol. 62(C), pages 762-767.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:762-767
    DOI: 10.1016/j.enpol.2013.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    2. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    2. Aune, Margrethe & Godbolt, Åsne Lund & Sørensen, Knut H. & Ryghaug, Marianne & Karlstrøm, Henrik & Næss, Robert, 2016. "Concerned consumption. Global warming changing household domestication of energy," Energy Policy, Elsevier, vol. 98(C), pages 290-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    3. Anas S. Alamoush & Dimitrios Dalaklis & Fabio Ballini & Aykut I. Ölcer, 2023. "Consolidating Port Decarbonisation Implementation: Concept, Pathways, Barriers, Solutions, and Opportunities," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    4. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    5. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
    6. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    7. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    8. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    9. Seyed Vahid Vakili & Fabio Ballini & Dimitrios Dalaklis & Aykut I. Ölçer, 2022. "A Conceptual Transdisciplinary Framework to Overcome Energy Efficiency Barriers in Ship Operation Cycles to Meet IMO’s Initial Green House Gas Strategy Goals: Case Study for an Iranian Shipping Compan," Energies, MDPI, vol. 15(6), pages 1-25, March.
    10. Constantine Kalangos, 2017. "Barriers and Policy Drivers to Energy Efficiency in Energy Intensive Turkish Industrial Sectors," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 110-120.
    11. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    12. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    13. Wang, Liyang & Morabito, Molly & Payne, Christopher T. & Robinson, Gerald, 2020. "Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California," Energy Policy, Elsevier, vol. 146(C).
    14. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
    15. Gomes Martins, A & Figueiredo, Rui & Coelho, Dulce & de Sousa, Jose Luis, 1998. "Energy planning in urban historical centres A methodological approach with a case-study," Energy Policy, Elsevier, vol. 26(15), pages 1153-1165, December.
    16. Wuttipan Kiatruangkrai & Ekachai Leelarasmee, 2016. "Barriers to Energy Saving for Public Middle Schools in Bangkok: From School Management Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 513-521.
    17. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    18. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    19. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:762-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.