IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp731-739.html
   My bibliography  Save this article

Simulation of climate change impact on energy consumption in buildings, case study of Iran

Author

Listed:
  • Roshan, Gh.R.
  • Orosa, J.A
  • Nasrabadi, T.

Abstract

The purpose of this research is to simulate the impact of climate changes on the need for energy consumption in household cooling and heating systems using degree-day index. To this end, general circulation model has been applied to identify future climate changes and simulate degree-day values. The research findings show an increase of energy consumption for cooling in households in 2075. Also, with warm seasons prolonging and cold seasons shrinking in a year, the need for the continuous supply of energy consumption for air cooling and ventilation increases.

Suggested Citation

  • Roshan, Gh.R. & Orosa, J.A & Nasrabadi, T., 2012. "Simulation of climate change impact on energy consumption in buildings, case study of Iran," Energy Policy, Elsevier, vol. 49(C), pages 731-739.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:731-739
    DOI: 10.1016/j.enpol.2012.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512006015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farhanieh, B. & Sattari, S., 2006. "Simulation of energy saving in Iranian buildings using integrative modelling for insulation," Renewable Energy, Elsevier, vol. 31(4), pages 417-425.
    2. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    3. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    4. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    5. Roberts, Simon, 2008. "Effects of climate change on the built environment," Energy Policy, Elsevier, vol. 36(12), pages 4552-4557, December.
    6. Mohammadnejad, M. & Ghazvini, M. & Mahlia, T.M.I. & Andriyana, A., 2011. "A review on energy scenario and sustainable energy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4652-4658.
    7. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roshan, Gh.R. & Ghanghermeh, A.A. & Attia, S., 2017. "Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran," Renewable Energy, Elsevier, vol. 101(C), pages 156-167.
    2. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    3. Gholamreza Roshan & Stefan W. Grab & Mohammad Saeed Najafi, 2020. "The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 365-399, May.
    4. Jong Hwan Suh, 2018. "Generating Future-Oriented Energy Policies and Technologies from the Multidisciplinary Group Discussions by Text-Mining-Based Identification of Topics and Experts," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    5. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    6. Jiang, Dachuan & Xiao, Weihua & Wang, Jianhua & Wang, Hao & Zhao, Yong & Li, Baoqi & Zhou, Pu, 2018. "Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China," Energy, Elsevier, vol. 142(C), pages 331-338.
    7. Shu Chen & Zhengen Ren & Zhi Tang & Xianrong Zhuo, 2021. "Long-Term Prediction of Weather for Analysis of Residential Building Energy Consumption in Australia," Energies, MDPI, vol. 14(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    2. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    3. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    4. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    5. Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
    6. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    7. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    8. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    9. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    10. Dutta, Rohan & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2011. "Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier," Energy, Elsevier, vol. 36(5), pages 3204-3214.
    11. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    12. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    13. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    14. Xu, Peng & Huang, Yu Joe & Miller, Norman & Schlegel, Nicole & Shen, Pengyuan, 2012. "Impacts of climate change on building heating and cooling energy patterns in California," Energy, Elsevier, vol. 44(1), pages 792-804.
    15. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    16. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    17. Rocío Maceiras & Víctor Alfonsín & Luis Seguí & Juan F. González, 2021. "Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol," Energies, MDPI, vol. 14(18), pages 1-10, September.
    18. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    19. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    20. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:731-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.