IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i12p7794-7802.html
   My bibliography  Save this article

Critique of the regulatory limitations of exhaust CO2 emissions from passenger cars in European union

Author

Listed:
  • Bampatsou, Christina
  • Zervas, Efthimios

Abstract

Transport is the second emitter of CO2 in the European Union, after the energy production sector, with constantly increased trend. European Union proposed the regulation 443/2009 to control the CO2 emissions from new passenger cars. According to that regulation, the average, for each car manufacturer, CO2 emissions of the new passenger cars registered in 2020 in European Union should not exceed the value of 95gCO2/km on the New European Driving Cycle. In the present work the regulation 443/2009 is analyzed and a critique is addressed to four points. The first point concerns the average upper limit of CO2 emissions of each car manufacturer. The second point concerns the possible derogation for the low volume manufacturers and the third to the penalties for the extra CO2 emissions. The fourth point concerns the value of the proposed average upper limit of CO2 emissions and the possibility to be changed in the future. A change to the above points is proposed. The maximum decrease of CO2 emissions and the principle of equality of citizens are the two principles of our propositions for the CO2 regulations.

Suggested Citation

  • Bampatsou, Christina & Zervas, Efthimios, 2011. "Critique of the regulatory limitations of exhaust CO2 emissions from passenger cars in European union," Energy Policy, Elsevier, vol. 39(12), pages 7794-7802.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7794-7802
    DOI: 10.1016/j.enpol.2011.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511007130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 2. Segment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5426-5441, October.
    2. Zervas, Efthimios & Lazarou, Christos, 2008. "Influence of European passenger cars weight to exhaust CO2 emissions," Energy Policy, Elsevier, vol. 36(1), pages 248-257, January.
    3. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country," Energy Policy, Elsevier, vol. 38(10), pages 5413-5425, October.
    4. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    5. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    6. Fontaras, Georgios & Samaras, Zissis, 2007. "A quantitative analysis of the European Automakers' voluntary commitment to reduce CO2 emissions from new passenger cars based on independent experimental data," Energy Policy, Elsevier, vol. 35(4), pages 2239-2248, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    2. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    3. Lucas, Alexandre & Alexandra Silva, Carla & Costa Neto, Rui, 2012. "Life cycle analysis of energy supply infrastructure for conventional and electric vehicles," Energy Policy, Elsevier, vol. 41(C), pages 537-547.
    4. Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
    5. Amadeo Fuenmayor, 2012. "Automobile taxation in Spain: recent reforms and future proposals," Chapters, in: Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), Green Taxation and Environmental Sustainability, chapter 9, pages 130-143, Edward Elgar Publishing.
    6. Efthimios Zervas & Leonidas Vatikiotis & Zoe Gareiou & Stella Manika & Ruth Herrero-Martin, 2021. "Assessment of the Greek National Plan of Energy and Climate Change—Critical Remarks," Sustainability, MDPI, vol. 13(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    2. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    3. Mijailović, Radomir, 2013. "The optimal lifetime of passenger cars based on minimization of CO2 emission," Energy, Elsevier, vol. 55(C), pages 869-878.
    4. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    5. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    6. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    7. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    8. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    9. Lucas, Alexandre & Alexandra Silva, Carla & Costa Neto, Rui, 2012. "Life cycle analysis of energy supply infrastructure for conventional and electric vehicles," Energy Policy, Elsevier, vol. 41(C), pages 537-547.
    10. Jesús Rodríguez-López & Gustavo A. Marrero & Rosa Marina González-Marrero, 2015. "Dieselization, CO2 emissions and fuel taxes in Europe," Working Papers 15.11, Universidad Pablo de Olavide, Department of Economics.
    11. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    12. Gustavo A. Marrero & Jesús Rodríguez-López & Rosa Marina González, 2020. "Car usage, $${\text {CO}}_{2}$$CO2 emissions and fuel taxes in Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(2), pages 203-241, June.
    13. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country," Energy Policy, Elsevier, vol. 38(10), pages 5413-5425, October.
    14. Hampf, Benjamin & Krüger, Jens J., 2010. "Technical efficiency of automobiles: A nonparametric approach incorporating carbon dioxide emissions," Darmstadt Discussion Papers in Economics 198, Darmstadt University of Technology, Department of Law and Economics.
    15. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    16. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    17. Hampf, Benjamin & Krüger, Jens, 2010. "Technical Efficiency of Automobiles – A Nonparametric Approach Incorporating Carbon Dioxide Emissions," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 43177, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    19. Bahamonde-Birke, Francisco J. & Hanappi, Tibor, 2016. "The potential of electromobility in Austria: Evidence from hybrid choice models under the presence of unreported information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 30-41.
    20. Rešetar, Marko & Pejić, Goran & Lulić, Zoran, 2018. "Changes and trends in the Croatian road vehicle fleet – Need for change of policy measures," Transport Policy, Elsevier, vol. 71(C), pages 92-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7794-7802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.