IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i10p5883-5897.html
   My bibliography  Save this article

Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market

Author

Listed:
  • Camus, C.
  • Farias, T.
  • Esteves, J.

Abstract

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. In this research, scenarios for 2020 EVs penetration and charging profiles are studied integrated with different hypotheses for electricity production mix. The impacts in load profiles, spot electricity prices and emissions are obtained for the Portuguese case study. Simulations for year 2020, in a scenario of low hydro production and high prices, resulted in energy costs for EVs recharge of 20cents/kWh, with 2 million EVs charging mainly at evening peak hours. On the other hand, in an off-peak recharge, a high hydro production and low wholesale prices' scenario, recharge costs could be reduced to 5.6cents/kWh. In these extreme cases, EV's energy prices were between 0.9⬠to 3.2⬠per 100km. Reductions in primary energy consumption, fossil fuels use and CO2 emissions of up to 3%, 14% and 10%, respectively, were verified (for a 2 million EVs' penetration and a dry year's off-peak recharge scenario) from the transportation and electricity sectors together when compared with a BAU scenario without EVs.

Suggested Citation

  • Camus, C. & Farias, T. & Esteves, J., 2011. "Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market," Energy Policy, Elsevier, vol. 39(10), pages 5883-5897, October.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:5883-5897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004988
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zulkarnain & Pekka Leviäkangas & Tuomo Kinnunen & Pekka Kess, 2014. "The Electric Vehicles Ecosystem Model: Construct, Analysis and Identification of Key Challenges," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(3 (Fall)), pages 253-277.
    2. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    3. Pina, André & Baptista, Patrícia & Silva, Carlos & Ferrão, Paulo, 2014. "Energy reduction potential from the shift to electric vehicles: The Flores island case study," Energy Policy, Elsevier, vol. 67(C), pages 37-47.
    4. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    5. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    6. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    7. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    8. Verma, Aman & Raj, Ratan & Kumar, Mayank & Ghandehariun, Samane & Kumar, Amit, 2015. "Assessment of renewable energy technologies for charging electric vehicles in Canada," Energy, Elsevier, vol. 86(C), pages 548-559.
    9. Antonio Colmenar-Santos & Carlos De Palacio & David Borge-Diez & Oscar Monzón-Alejandro, 2014. "Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain," Energies, MDPI, vol. 7(3), pages 1-23, February.
    10. Armstrong, M. & El Hajj Moussa, C. & Adnot, J. & Galli, A. & Riviere, P., 2013. "Optimal recharging strategy for battery-switch stations for electric vehicles in France," Energy Policy, Elsevier, vol. 60(C), pages 569-582.
    11. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
    12. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    13. Pfeifer, Antun & Krajačić, Goran & Haas, Reinhard & Duić, Neven, 2020. "Consequences of different strategic decisions of market coupled zones on the development of energy systems based on coal and hydropower," Energy, Elsevier, vol. 210(C).
    14. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    15. Yumiko Iwafune & Kazuhiko Ogimoto & Hitoshi Azuma, 2019. "Integration of Electric Vehicles into the Electric Power System Based on Results of Road Traffic Census," Energies, MDPI, vol. 12(10), pages 1-21, May.
    16. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Weiwei Chen & Maozeng Xu & Qingsong Xing & Ligang Cui & Liudan Jiao, 2020. "A Fuzzy Demand-Profit Model for the Sustainable Development of Electric Vehicles in China from the Perspective of Three-Level Service Chain," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    18. Sánchez-Braza, Antonio & Cansino, José M. & Lerma, Enrique, 2014. "Main drivers for local tax incentives to promote electric vehicles: The Spanish case," Transport Policy, Elsevier, vol. 36(C), pages 1-9.
    19. Camus, Cristina & Farias, Tiago, 2012. "The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study," Energy Policy, Elsevier, vol. 43(C), pages 153-165.
    20. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    21. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    22. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    23. Margaret Armstrong & Charles El Hajj Moussa & Alain Galli & Philippe Rivière & Jérôme Adnot, 2012. "Optimal Recharging Strategy for Battery-Switch Stations for Electric Vehicles in France," Working Papers hal-00750257, HAL.

    More about this item

    Keywords

    Energy Market Electric vehicles;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:5883-5897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.