IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v198y2025ics0301421525000229.html
   My bibliography  Save this article

The impact of by-product production on the availability of critical metals for the transition to renewable energy

Author

Listed:
  • Bigerna, Simona
  • Campbell, Gary

Abstract

The availability of critical metals for the transition to renewable energy is of growing importance as the scale of the materials needed becomes apparent. There is a concern some production could be constrained as by-products of other metals. This paper provides a conceptional model about the behavior of by-product metals. From this model, scenarios are developed about the types of price-production interaction patterns between by-product and main product metals that might be observed given different situations of by-product metal availability. The paper's aim is to determine if there is evidence of by-product metal production being constrained by the output of the main product metal as the transition to renewable energy continues to grow. For the rare earth metals, the four metals used for renewable energy are shown to move together significantly in price (0.672–0.956) and not to move significantly with the other rare earths prices (0.028–0.351). These results suggest the possibility of a mismatch between overall joint rare earth production and the availability of the separated individual metals. For the base metals, significant statistical correlations (0.787–0.962) between by-product metal and main product metal production with weaker significance for prices (0.093–0.750) was found. These results indicate a possible pattern of production constraint for critical by-product metals as their demand grows. Policy recommendations in the case of constrained by-product metal production are to enhance recycling programs to increase the metals' supply, find new sources for the metals, and develop technology that reduces the metals' need.

Suggested Citation

  • Bigerna, Simona & Campbell, Gary, 2025. "The impact of by-product production on the availability of critical metals for the transition to renewable energy," Energy Policy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000229
    DOI: 10.1016/j.enpol.2025.114515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianluca Torta & Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2024. "Exploring mass and economic potentials of rare earth elements recycling from electric vehicles at end-of-life," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(3), pages 573-587, September.
    2. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    3. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    4. Shammugam, Shivenes & Rathgeber, Andreas & Schlegl, Thomas, 2019. "Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?," Resources Policy, Elsevier, vol. 61(C), pages 49-66.
    5. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    6. Afflerbach, Patrick & Fridgen, Gilbert & Keller, Robert & Rathgeber, Andreas W. & Strobel, Florian, 2014. "The by-product effect on metal markets – New insights to the price behavior of minor metals," Resources Policy, Elsevier, vol. 42(C), pages 35-44.
    7. Campbell, Gary A., 1985. "The role of co-products in stabilizing the metal mining industry," Resources Policy, Elsevier, vol. 11(4), pages 267-274, December.
    8. Smith Stegen, Karen, 2015. "Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis," Energy Policy, Elsevier, vol. 79(C), pages 1-8.
    9. Klimenko, V.V. & Ratner, S.V. & Tereshin, A.G., 2021. "Constraints imposed by key-material resources on renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    11. Amelie Schischke & Patric Papenfuß & Andreas Rathgeber, 2024. "The three co’s to jointly model commodity markets: co-production, co-consumption and co-trading," Empirical Economics, Springer, vol. 66(2), pages 883-925, February.
    12. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    13. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    14. Fikru, Mahelet G. & Awuah-Offei, Kwame, 2022. "An economic framework for producing critical minerals as joint products," Resources Policy, Elsevier, vol. 77(C).
    15. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    16. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.
    17. Gary A. Campbell, 2020. "The cobalt market revisited," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 21-28, July.
    18. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    19. Abbas, Shujaat & Sinha, Avik & Saha, Tanaya & Shah, Muhammad Ibrahim, 2023. "Response of mineral market to renewable energy production in the USA: Where lies the sustainable energy future," Energy Policy, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    2. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    3. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    4. Kim, Kihyung, 2020. "Jointly produced metal markets are endogenously unstable," Resources Policy, Elsevier, vol. 66(C).
    5. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    6. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    7. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    9. Shammugam, Shivenes & Rathgeber, Andreas & Schlegl, Thomas, 2019. "Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?," Resources Policy, Elsevier, vol. 61(C), pages 49-66.
    10. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    11. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    12. Zhang, Hongwei & Li, Zongzhen & Song, Huiling & Gao, Wang, 2024. "Insight into clean energy market’s role in the connectedness between joint-consumption metals," Energy, Elsevier, vol. 302(C).
    13. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    14. Choi, Chul Hun & Kim, Sang-Phil & Lee, Seokcheon & Zhao, Fu, 2020. "Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study," Energy, Elsevier, vol. 203(C).
    15. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    16. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    17. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    18. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    19. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    20. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.