IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v82y2025ics0927539825000404.html

The economic value of equity implied volatility forecasting with machine learning

Author

Listed:
  • Borochin, Paul
  • Zhao, Yanhui

Abstract

We evaluate the importance of nonlinear and interactive effects in implied volatility innovation forecasting by comparing the performance of machine learning models that can search for interactive effects relative to classical ones that cannot, measuring the economic significance of these predictions in cross-sectional and time series pricing tests of delta-hedged option returns. Machine learning models offer superior out of sample performance. Since the predictive variables are the same across all models, these performance differences likely capture the value of nonlinear and interactive effects in implied volatility forecasts. Our results are robust to look-ahead bias and model overfitting.

Suggested Citation

  • Borochin, Paul & Zhao, Yanhui, 2025. "The economic value of equity implied volatility forecasting with machine learning," Journal of Empirical Finance, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:empfin:v:82:y:2025:i:c:s0927539825000404
    DOI: 10.1016/j.jempfin.2025.101618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539825000404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2025.101618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    3. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    4. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    5. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    7. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    8. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
    9. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    10. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    11. Dennis, Patrick & Mayhew, Stewart & Stivers, Chris, 2006. "Stock Returns, Implied Volatility Innovations, and the Asymmetric Volatility Phenomenon," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(2), pages 381-406, June.
    12. repec:bla:jfinan:v:59:y:2004:i:2:p:711-753 is not listed on IDEAS
    13. Palazzo, Berardino, 2012. "Cash holdings, risk, and expected returns," Journal of Financial Economics, Elsevier, vol. 104(1), pages 162-185.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    16. Sophie X. Ni & Jun Pan & Allen M. Poteshman, 2008. "Volatility Information Trading in the Option Market," Journal of Finance, American Finance Association, vol. 63(3), pages 1059-1091, June.
    17. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    20. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    21. Blume, Marshall E & Husic, Frank, 1973. "Price, Beta, and Exchange Listing," Journal of Finance, American Finance Association, vol. 28(2), pages 283-299, May.
    22. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    23. Jeffrey Pontiff & Artemiza Woodgate, 2008. "Share Issuance and Cross‐sectional Returns," Journal of Finance, American Finance Association, vol. 63(2), pages 921-945, April.
    24. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    25. Cao, Jie & Han, Bing, 2013. "Cross section of option returns and idiosyncratic stock volatility," Journal of Financial Economics, Elsevier, vol. 108(1), pages 231-249.
    26. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    27. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    28. Fama, Eugene F. & French, Kenneth R., 2006. "Profitability, investment and average returns," Journal of Financial Economics, Elsevier, vol. 82(3), pages 491-518, December.
    29. Bali, Turan G. & Murray, Scott, 2013. "Does Risk-Neutral Skewness Predict the Cross-Section of Equity Option Portfolio Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1145-1171, August.
    30. Bradshaw, Mark T. & Richardson, Scott A. & Sloan, Richard G., 2006. "The relation between corporate financing activities, analysts' forecasts and stock returns," Journal of Accounting and Economics, Elsevier, vol. 42(1-2), pages 53-85, October.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Goyal & Alessio Saretto, 2022. "Are Equity Option Returns Abnormal? IPCA Says No," Working Papers 2214, Federal Reserve Bank of Dallas.
    2. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Forecasting stock return distributions around the globe with quantile neural networks," Papers 2408.07497, arXiv.org, revised Aug 2025.
    3. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    4. Wang, Jianqiu & Wu, Ke & Yang, Sijie & Zhou, Dexin, 2024. "Asymmetry and the Cross-section of Option Returns," Journal of Financial Markets, Elsevier, vol. 71(C).
    5. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    6. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    7. Hou, Kewei & Xue, Chen & Zhang, Lu, 2017. "Replicating Anomalies," Working Paper Series 2017-10, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    8. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, March.
    9. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    10. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble Learning for Sector Rotation: A Gradient-Free Framework," Papers 2304.09947, arXiv.org, revised Nov 2025.
    11. Ho, Hwai-Chung & Tsai, Wei-Che, 2020. "Price delay and post-earnings announcement drift anomalies: The role of option-implied betas," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    12. Kevin Aretz & Ming-Tsung Lin & Ser-Huang Poon, 2023. "Moneyness, Underlying Asset Volatility, and the Cross-Section of Option Returns," Review of Finance, European Finance Association, vol. 27(1), pages 289-323.
    13. Mi‐Hsiu Chiang & Hsin‐Yu Chiu & Robin K. Chou, 2021. "Relevance of the disposition effect on the options market: New evidence," Financial Management, Financial Management Association International, vol. 50(1), pages 75-106, March.
    14. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    15. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    16. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    17. Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
    18. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    19. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    20. Clifford S. Asness & Andrea Frazzini & Lasse Heje Pedersen, 2019. "Quality minus junk," Review of Accounting Studies, Springer, vol. 24(1), pages 34-112, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:82:y:2025:i:c:s0927539825000404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.