IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i3p978-992.html
   My bibliography  Save this article

Implementing no free disposability in data envelopment analysis

Author

Listed:
  • Khezrimotlagh, Dariush
  • Zhu, Joe

Abstract

Data envelopment analysis (DEA) relies on two main postulates of convexity and inefficiency (free disposability). No free disposability postulate is suggested to address undesirable measures. In this study, we demonstrate how no-disposability assumption can be correctly integrated into the DEA framework. We propose the appropriate constraints that should be used in the absence of the free disposability postulate in a DEA model. The additional constraints bound the previously unbounded feasible region (production technology) rather than altering the strongly efficient frontier. We also discuss that treating an undesirable output (input) as a desirable input (output) does not affect the corresponding efficient frontier of a dataset, but misrepresents its corresponding production technology in the presence of free disposability postulate. We provide numerical examples to clarify the concerns in treating an undesirable measure as a desirable measure. A real-life example of United States’ electric power plants is also discussed.

Suggested Citation

  • Khezrimotlagh, Dariush & Zhu, Joe, 2025. "Implementing no free disposability in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 322(3), pages 978-992.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:3:p:978-992
    DOI: 10.1016/j.ejor.2024.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    2. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    3. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    4. Khezrimotlagh, Dariush & Cook, Wade D. & Zhu, Joe, 2020. "A nonparametric framework to detect outliers in estimating production frontiers," European Journal of Operational Research, Elsevier, vol. 286(1), pages 375-388.
    5. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    8. Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.
    9. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    10. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    11. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    12. Robert Russell, R., 1990. "Continuity of measures of technical efficiency," Journal of Economic Theory, Elsevier, vol. 51(2), pages 255-267, August.
    13. Dariush Khezrimotlagh & Shaharuddin Salleh & Zahra Mohsenpour, 2014. "A new method for evaluating decision making units in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 694-707, May.
    14. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    15. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    16. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
    19. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    20. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    21. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    22. Dariush Khezrimotlagh & Wade D. Cook & Joe Zhu, 2021. "Number of performance measures versus number of decision making units in DEA," Annals of Operations Research, Springer, vol. 303(1), pages 529-562, August.
    23. Dariush Khezrimotlagh & Joe Zhu, 2022. "Multivariate returns to scale production frontiers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(6), pages 1411-1419, June.
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. Holger Scheel & Stefan Scholtes, 2003. "Continuity of DEA Efficiency Measures," Operations Research, INFORMS, vol. 51(1), pages 149-159, February.
    26. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    3. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    4. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    6. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    7. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    8. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    9. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
    10. Puggioni, Daniela & Stefanou, Spiro E., 2016. "The Value of Being Socially Responsible. A DEA Approach for Analyzing Efficiency and Recovering Shadow Prices of CSR Activities," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235723, Agricultural and Applied Economics Association.
    11. Bretholt, Abraham & Pan, Jeh-Nan, 2013. "Evolving the latent variable model as an environmental DEA technology," Omega, Elsevier, vol. 41(2), pages 315-325.
    12. Halkos, George & Tzeremes, Nickolaos, 2011. "Does the Kyoto Protocol Agreement matters? An environmental efficiency analysis," MPRA Paper 30652, University Library of Munich, Germany.
    13. George Halkos & Nickolaos Tzeremes, 2014. "Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers," Journal of Productivity Analysis, Springer, vol. 41(3), pages 367-382, June.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    16. Arsen Benga & Glediana Zeneli (Foto) & María Jesús Delgado‑Rodríguez & Sonia Lucas Santos, 2025. "Company efforts and environmental efficiency: evidence from European railways considering market-based emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 9977-10012, May.
    17. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    18. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    19. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    20. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:3:p:978-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.