IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i2p580-588.html
   My bibliography  Save this article

Weighted aggregation systems and an expectation level-based weighting and scoring procedure

Author

Listed:
  • Dombi, József
  • Jónás, Tamás

Abstract

This paper presents a novel approach to the weighted aggregation and to determination of weights in an aggregation procedure. In our study, we introduce the concept of a weighted aggregation system that consists of two components: (1) a weighting transformation and (2) an aggregation operator, both induced by a common generator function. We provide the necessary and sufficient condition for the form of a generator function-based weighted aggregation system. We show that the weighted quasi-arithmetic means on the non-negative extended real line are none other than the aggregation functions induced by weighted aggregation systems, i.e., these means are compositions of an n-ary aggregation operator and n weighting transformations (n∈N, n≥1). Next, using weighted quasi-arithmetic means on the unit interval, we introduce a new, expectation level-based weight determination method and a scoring procedure. In this method, the decision-maker’s expectation levels for the input variables are directly transformed into weights by making use of the generator function of a weighted quasi-arithmetic mean. We utilize this mean as a scoring function to evaluate the decision alternatives. Lastly, by the means of illustrative numerical examples, we present a novel decision model, in which the expectation levels can be even intervals, i.e., the weights are also intervals. Finally, we get an interval-valued score for each alternative.

Suggested Citation

  • Dombi, József & Jónás, Tamás, 2022. "Weighted aggregation systems and an expectation level-based weighting and scoring procedure," European Journal of Operational Research, Elsevier, vol. 299(2), pages 580-588.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:2:p:580-588
    DOI: 10.1016/j.ejor.2021.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: Means," Post-Print hal-00539028, HAL.
    2. de Almeida, Jonatas Araujo & Costa, Ana Paula Cabral Seixas & de Almeida-Filho, Adiel Teixeira, 2016. "A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoffAuthor-Name: de Almeida, Adiel Teixeira," European Journal of Operational Research, Elsevier, vol. 250(1), pages 179-191.
    3. Radko Mesiar & Andrea Stupňanová & Ronald R. Yager, 2018. "Extremal symmetrization of aggregation functions," Annals of Operations Research, Springer, vol. 269(1), pages 535-548, October.
    4. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore & Słowiński, Roman, 2017. "A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis," Omega, Elsevier, vol. 73(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    2. Madson Bruno da Silva Monte & Danielle Costa Morais, 2019. "A Decision Model for Identifying and Solving Problems in an Urban Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4835-4848, November.
    3. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    4. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    5. Merigó, José M. & Palacios-Marqués, Daniel & Ribeiro-Navarrete, Belén, 2015. "Aggregation systems for sales forecasting," Journal of Business Research, Elsevier, vol. 68(11), pages 2299-2304.
    6. Fernández, Eduardo & Navarro, Jorge & Solares, Efrain, 2022. "A hierarchical interval outranking approach with interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(1), pages 293-307.
    7. Merigó, José M. & Palacios-Marqués, Daniel & del Mar Benavides-Espinosa, María, 2015. "Aggregation methods to calculate the average price," Journal of Business Research, Elsevier, vol. 68(7), pages 1574-1580.
    8. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    9. Thalles Vitelli Garcez & Helder Tenório Cavalcanti & Adiel Teixeira de Almeida, 2021. "A hybrid decision support model using Grey Relational Analysis and the Additive-Veto Model for solving multicriteria decision-making problems: an approach to supplier selection," Annals of Operations Research, Springer, vol. 304(1), pages 199-231, September.
    10. Gagolewski, Marek, 2015. "Spread measures and their relation to aggregation functions," European Journal of Operational Research, Elsevier, vol. 241(2), pages 469-477.
    11. Lucia Reis Peixoto Roselli & Adiel Teixeira Almeida & Eduarda Asfora Frej, 2019. "Decision neuroscience for improving data visualization of decision support in the FITradeoff method," Operational Research, Springer, vol. 19(4), pages 933-953, December.
    12. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    13. Eduarda Asfora Frej & Danielle Costa Morais & Adiel Teixeira de Almeida, 2022. "Negotiation Support Through Interactive Dominance Relationship Specification," Group Decision and Negotiation, Springer, vol. 31(3), pages 591-620, June.
    14. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    15. Peláez, José Ignacio & Bernal, Rubén, 2016. "Selective majority additive ordered weighting averaging operatorAuthor-Name: Karanik, Marcelo," European Journal of Operational Research, Elsevier, vol. 250(3), pages 816-826.
    16. Liao, Huchang & Wu, Xingli & Mi, Xiaomei & Herrera, Francisco, 2020. "An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule," Omega, Elsevier, vol. 93(C).
    17. Lucia Reis Peixoto Roselli & Leydiana de Sousa Pereira & Anderson Lucas Carneiro de Lima Silva & Adiel Teixeira Almeida & Danielle Costa Morais & Ana Paula Cabral Seixas Costa, 2020. "Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure," Annals of Operations Research, Springer, vol. 289(1), pages 67-84, June.
    18. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    19. Carpitella, Silvia & Mzougui, Ilyas & Benítez, Julio & Carpitella, Fortunato & Certa, Antonella & Izquierdo, Joaquín & La Cascia, Marco, 2021. "A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:2:p:580-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.