IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i1p313-326.html
   My bibliography  Save this article

Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study

Author

Listed:
  • Li, Y.
  • Zhu, M.
  • Klein, R.
  • Kong, N.

Abstract

Colorectal cancer (CRC) is notoriously hard to combat for its high incidence and mortality rates. However, with improved screening technology and better understanding of disease pathways, CRC is more likely to be detected at early stage and thus more likely to be cured. Among the available screening methods, colonoscopy is most commonly used in the U.S. because of its capability of visualizing the entire colon and removing the polyps it detected. The current national guideline for colonoscopy screening recommends an observation-based screening strategy. Nevertheless, there is scant research studying the cost-effectiveness of the recommended observation-based strategy and its variants. In this paper, we describe a partially observable Markov chain (POMC) model which allows us to assess the cost-effectiveness of both fixed-interval and observation-based colonoscopy screening strategies. In our model, we consider detailed adenomatous polyp states and estimate state transition probabilities based on longitudinal clinical data from a specific population cohort. We conduct a comprehensive numerical study which investigates several key factors in screening strategy design, including screening frequency, initial screening age, screening end age, and screening compliance rate. We also conduct sensitivity analyses on the cost and quality of life parameters. Our numerical result demonstrates the usability of our model in assessing colonoscopy screening strategies with consideration of partial observation of true health states. This research facilitates future design of better colonoscopy screening strategies.

Suggested Citation

  • Li, Y. & Zhu, M. & Klein, R. & Kong, N., 2014. "Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study," European Journal of Operational Research, Elsevier, vol. 238(1), pages 313-326.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:313-326
    DOI: 10.1016/j.ejor.2014.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    2. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of PSA Screening Policies," Medical Decision Making, , vol. 32(2), pages 337-349, March.
    3. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    4. Richard A. Hirth & Michael E. Chernew & Edward Miller & A. Mark Fendrick & William G. Weissert, 2000. "Willingness to Pay for a Quality-adjusted Life Year," Medical Decision Making, , vol. 20(3), pages 332-342, July.
    5. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    6. Marne C. Cario & Barry L. Nelson, 1998. "Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 72-81, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    2. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    3. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    4. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    5. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    6. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    7. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    8. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    9. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    10. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    11. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    12. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    13. Christian Wernz & Yongjia Song & Danny R. Hughes, 2021. "How hospitals can improve their public quality metrics: a decision-theoretic model," Health Care Management Science, Springer, vol. 24(4), pages 702-715, December.
    14. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    15. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    16. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    17. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    18. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    19. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    20. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:313-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.