IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v32y2012i2p337-349.html
   My bibliography  Save this article

Optimization of PSA Screening Policies

Author

Listed:
  • Jingyu Zhang
  • Brian T. Denton
  • Hari Balasubramanian
  • Nilay D. Shah
  • Brant A. Inman

Abstract

Objective. To estimate the benefit of PSA-based screening for prostate cancer from the patient and societal perspectives. Method. A partially observable Markov decision process model was used to optimize PSA screening decisions. Age-specific prostate cancer incidence rates and the mortality rates from prostate cancer and competing causes were considered. The model trades off the potential benefit of early detection with the cost of screening and loss of patient quality of life due to screening and treatment. PSA testing and biopsy decisions are made based on the patient’s probability of having prostate cancer. Probabilities are inferred based on the patient’s complete PSA history using Bayesian updating. Data Sources. The results of all PSA tests and biopsies done in Olmsted County, Minnesota, from 1993 to 2005 (11,872 men and 50,589 PSA test results). Outcome Measures. Patients’ perspective: to maximize expected quality-adjusted life years (QALYs); societal perspective: to maximize the expected monetary value based on societal willingness to pay for QALYs and the cost of PSA testing, prostate biopsies, and treatment. Results. From the patient perspective, the optimal policy recommends stopping PSA testing and biopsy at age 76. From the societal perspective, the stopping age is 71. The expected incremental benefit of optimal screening over the traditional guideline of annual PSA screening with threshold 4.0 ng/mL for biopsy is estimated to be 0.165 QALYs per person from the patient perspective and 0.161 QALYs per person from the societal perspective. PSA screening based on traditional guidelines is found to be worse than no screening at all. Conclusions. PSA testing done with traditional guidelines underperforms and therefore underestimates the potential benefit of screening. Optimal screening guidelines differ significantly depending on the perspective of the decision maker.

Suggested Citation

  • Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of PSA Screening Policies," Medical Decision Making, , vol. 32(2), pages 337-349, March.
  • Handle: RePEc:sae:medema:v:32:y:2012:i:2:p:337-349
    DOI: 10.1177/0272989X11416513
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X11416513
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X11416513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William S. Lovejoy, 1991. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 39(1), pages 162-175, February.
    2. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    3. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Bertsimas & John Silberholz & Thomas Trikalinos, 2018. "Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening," Health Care Management Science, Springer, vol. 21(1), pages 105-118, March.
    2. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    3. Arthur J. Swersey & John Colberg & Ronald Evans & Michael W. Kattan & Johannes Ledolter & Rodney Parker, 2020. "Decision models for distinguishing between clinically insignificant and significant tumors in prostate cancer biopsies: an application of Bayes’ Theorem to reduce costs and improve outcomes," Health Care Management Science, Springer, vol. 23(1), pages 102-116, March.
    4. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.
    5. Li, Y. & Zhu, M. & Klein, R. & Kong, N., 2014. "Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study," European Journal of Operational Research, Elsevier, vol. 238(1), pages 313-326.
    6. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    2. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    3. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    4. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    5. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    6. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    7. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    8. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    9. Daniel Underwood & Jingyu Zhang & Brian Denton & Nilay Shah & Brant Inman, 2012. "Simulation optimization of PSA-threshold based prostate cancer screening policies," Health Care Management Science, Springer, vol. 15(4), pages 293-309, December.
    10. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    11. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    12. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    13. Sait Tunç & Oguzhan Alagoz & Elizabeth S. Burnside, 2022. "A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2361-2378, May.
    14. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    15. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    16. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    18. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    19. Baruch Keren & Joseph Pliskin, 2011. "Optimal timing of joint replacement using mathematical programming and stochastic programming models," Health Care Management Science, Springer, vol. 14(4), pages 361-369, November.
    20. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:32:y:2012:i:2:p:337-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.