IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v230y2015i1p57-8510.1007-s10479-013-1520-3.html
   My bibliography  Save this article

Inverse optimization for assessing emerging technologies in breast cancer screening

Author

Listed:
  • Turgay Ayer

Abstract

Identifying the optimal screening strategies for breast cancer, the second leading cause of female cancer deaths in the US, is a major societal problem creating much controversy. The optimal screening strategies significantly depend on the sensitivity and specificity of the screening modality used. While the current state-of-the-art screening technology is mammography, its sensitivity or specificity may increase over time, or mammography may be replaced by another technology such as tomosynthesis in the near future. The purpose of this study is to identify the optimal use of the next generation of breast cancer screening modalities, whose sensitivity and specificity in clinical practice are either yet unknown or keep improving over time. Contrary to the prior literature that focuses on finding the optimal screening policy for given sensitivity and specificity values, we take an inverse optimization approach and focus on finding the range of sensitivity and specificity values, for which a given screening policy is optimal. To replicate breast cancer progression in the US population under various screening policies, we develop a parametric Partially Observable Markov Chain (POMC) model, which accounts for unobservable and age-specific disease progression, age-specific mortality, and the possibility of detecting cancer without a screening exam (either via self-detection or a clinical breast exam). We then formulate a nonlinear program (NLP) to identify the range of sensitivity and specificity values that optimize a particular screening policy. We show that this NLP is nonconvex for some parameter values, and hence difficult to solve. We prove several structural properties of the model, and by exploiting these properties, we propose a complete solution algorithm for this problem. We use real data in our numerical analysis and show that with the current technology, biennial breast cancer screening is slightly better than annual screening for the average-risk population. We also find that an improvement only in sensitivity (but not in specificity) will not change the current optimal policy. Furthermore, we characterize the lost potential quality-adjusted life years (QALYs) due to suboptimal practice, and show that biennial screening is more robust than annual screening in the sense that it results in fewer lost QALYs due to choosing a suboptimal screening policy. Given that the design of multicenter clinical trials may be prohibitively expensive and lengthy, our findings may be especially valuable to policymakers in deciding about the optimal use of an emerging breast cancer screening modality, and adapting a new technology in different settings. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
  • Handle: RePEc:spr:annopr:v:230:y:2015:i:1:p:57-85:10.1007/s10479-013-1520-3
    DOI: 10.1007/s10479-013-1520-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1520-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1520-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drummond, Michael F. & Sculpher, Mark J. & Torrance, George W. & O'Brien, Bernie J. & Stoddart, Greg L., 2005. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 3, number 9780198529453, Decembrie.
    2. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    3. Suleyman Özekici & Stanley R. Pliska, 1991. "Optimal Scheduling of Inspections: A Delayed Markov Model with False Positives and Negatives," Operations Research, INFORMS, vol. 39(2), pages 261-273, April.
    4. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    5. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    6. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    7. Rose Baker, 1998. "Use of a mathematical model to evaluate breast cancer screening policy," Health Care Management Science, Springer, vol. 1(2), pages 103-113, October.
    8. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    2. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    3. Ghobadi, Kimia & Mahmoudzadeh, Houra, 2021. "Inferring linear feasible regions using inverse optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 829-843.
    4. Hosang Jung & Chi-Guhn Lee & Chelsea White, 2015. "Socially responsible service operations management: an overview," Annals of Operations Research, Springer, vol. 230(1), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    2. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    3. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    4. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    5. Ali Hajjar & Oguzhan Alagoz, 2023. "Personalized Disease Screening Decisions Considering a Chronic Condition," Management Science, INFORMS, vol. 69(1), pages 260-282, January.
    6. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    7. Christian Wernz & Yongjia Song & Danny R. Hughes, 2021. "How hospitals can improve their public quality metrics: a decision-theoretic model," Health Care Management Science, Springer, vol. 24(4), pages 702-715, December.
    8. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    9. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    10. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    11. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    12. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    13. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    14. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    15. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    16. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    17. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    18. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    19. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    20. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:230:y:2015:i:1:p:57-85:10.1007/s10479-013-1520-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.