IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v1y1998i2p103-113.html
   My bibliography  Save this article

Use of a mathematical model to evaluate breast cancer screening policy

Author

Listed:
  • Rose Baker

Abstract

A model of breast cancer screening was developed, in which the processes of tumour origination and growth, detection of tumours at screening, presentation of women with cancers to their GP, and of survival after diagnosis were modelled parametrically. The model was fitted to data from the North‐West of the UK, for 413 women who screened positive, and for 761 women who developed interval cancers. Model validation comprised verification that the final model fitted the data adequately, together with the comparison of model predictions with findings by other workers. The mathematical model was used to assess different screening policies, and to ask “what if” questions. Taking the cost of breast cancer to be the sum of the cost of screening and the cost of PYLL (person years of life lost due to cancer), the optimal screening policy was calculated. The costs of the current policy and of other possible screening policies were found, together with their effects on life lost and on mortality. The tentative conclusion was that if monies can be found to extend the screening programme, for example to carry out one more screen per woman, most benefit would be obtained by reducing the start age of screening by 3 years. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Rose Baker, 1998. "Use of a mathematical model to evaluate breast cancer screening policy," Health Care Management Science, Springer, vol. 1(2), pages 103-113, October.
  • Handle: RePEc:kap:hcarem:v:1:y:1998:i:2:p:103-113
    DOI: 10.1023/A:1019046619402
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1019046619402
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1019046619402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    2. James F. O’Mahony & Joost van Rosmalen & Nino A. Mushkudiani & Frans-Willem Goudsmit & Marinus J. C. Eijkemans & Eveline A. M. Heijnsdijk & Ewout W. Steyerberg & J. Dik F. Habbema, 2015. "The Influence of Disease Risk on the Optimal Time Interval between Screens for the Early Detection of Cancer," Medical Decision Making, , vol. 35(2), pages 183-195, February.
    3. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    4. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    5. Natasha Stout & Amy Knudsen & Chung Kong & Pamela McMahon & G. Gazelle, 2009. "Calibration Methods Used in Cancer Simulation Models and Suggested Reporting Guidelines," PharmacoEconomics, Springer, vol. 27(7), pages 533-545, July.
    6. Stavroula A. Chrysanthopoulou & Carolyn M. Rutter & Constantine A. Gatsonis, 2021. "Bayesian versus Empirical Calibration of Microsimulation Models: A Comparative Analysis," Medical Decision Making, , vol. 41(6), pages 714-726, August.
    7. Nikolai Mühlberger & Gaby Sroczynski & Artemisa Gogollari & Beate Jahn & Nora Pashayan & Ewout Steyerberg & Martin Widschwendter & Uwe Siebert, 2021. "Cost effectiveness of breast cancer screening and prevention: a systematic review with a focus on risk-adapted strategies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1311-1344, November.
    8. Christian Wernz & Yongjia Song & Danny R. Hughes, 2021. "How hospitals can improve their public quality metrics: a decision-theoretic model," Health Care Management Science, Springer, vol. 24(4), pages 702-715, December.
    9. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:1:y:1998:i:2:p:103-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.