IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i3p829-843.html
   My bibliography  Save this article

Inferring linear feasible regions using inverse optimization

Author

Listed:
  • Ghobadi, Kimia
  • Mahmoudzadeh, Houra

Abstract

Consider a problem where a set of feasible observations are provided by an expert, and a cost function exists that characterizes which of the observations dominate the others and are hence, preferred. Assume the expert has an implicit optimization model in mind to identify the feasible observations, but the explicit constraints of this underlying model are unknown. Our goal is to infer the feasible region of such an optimization model that would render these observations feasible while making the best ones optimal for the cost (objective) function. Such feasible regions (i) build a baseline for a systematic categorization of future observations, and (ii) allow for using sensitivity analysis to discern changes in optimal solutions if the objective function changes in the future.

Suggested Citation

  • Ghobadi, Kimia & Mahmoudzadeh, Houra, 2021. "Inferring linear feasible regions using inverse optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 829-843.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:3:p:829-843
    DOI: 10.1016/j.ejor.2020.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172030761X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çiğdem Güler & Horst W. Hamacher, 2010. "Capacity inverse minimum cost flow problem," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 43-59, January.
    2. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    3. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    4. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    5. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    6. Stephan Dempe & Sebastian Lohse, 2006. "Inverse Linear Programming," Lecture Notes in Economics and Mathematical Systems, in: Alberto Seeger (ed.), Recent Advances in Optimization, pages 19-28, Springer.
    7. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    8. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    9. Dimitris Bertsimas & Vishal Gupta & Ioannis Ch. Paschalidis, 2012. "Inverse Optimization: A New Perspective on the Black-Litterman Model," Operations Research, INFORMS, vol. 60(6), pages 1389-1403, December.
    10. Thierry Petit & Andrew C. Trapp, 2019. "Enriching Solutions to Combinatorial Problems via Solution Engineering," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 429-444, July.
    11. Chan, Timothy C.Y. & Kaw, Neal, 2020. "Inverse optimization for the recovery of constraint parameters," European Journal of Operational Research, Elsevier, vol. 282(2), pages 415-427.
    12. Marvin D. Troutt & Wan-Kai Pang & Shui-Hung Hou, 2006. "Behavioral Estimation of Mathematical Programming Objective Function Coefficients," Management Science, INFORMS, vol. 52(3), pages 422-434, March.
    13. Troutt, Marvin D. & Brandyberry, Alan A. & Sohn, Changsoo & Tadisina, Suresh K., 2008. "Linear programming system identification: The general nonnegative parameters case," European Journal of Operational Research, Elsevier, vol. 185(1), pages 63-75, February.
    14. John R. Birge & Ali Hortaçsu & J. Michael Pavlin, 2017. "Inverse Optimization for the Recovery of Market Structure from Market Outcomes: An Application to the MISO Electricity Market," Operations Research, INFORMS, vol. 65(4), pages 837-855, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    2. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    3. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    4. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    5. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    6. Shi Yu & Haoran Wang & Chaosheng Dong, 2020. "Learning Risk Preferences from Investment Portfolios Using Inverse Optimization," Papers 2010.01687, arXiv.org, revised Feb 2021.
    7. Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
    8. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    9. Timothy C. Y. Chan & Maria Eberg & Katharina Forster & Claire Holloway & Luciano Ieraci & Yusuf Shalaby & Nasrin Yousefi, 2022. "An Inverse Optimization Approach to Measuring Clinical Pathway Concordance," Management Science, INFORMS, vol. 68(3), pages 1882-1903, March.
    10. Chan, Timothy C.Y. & Kaw, Neal, 2020. "Inverse optimization for the recovery of constraint parameters," European Journal of Operational Research, Elsevier, vol. 282(2), pages 415-427.
    11. Timothy C. Y. Chan & Katharina Forster & Steven Habbous & Claire Holloway & Luciano Ieraci & Yusuf Shalaby & Nasrin Yousefi, 2022. "Inverse optimization on hierarchical networks: an application to breast cancer clinical pathways," Health Care Management Science, Springer, vol. 25(4), pages 590-622, December.
    12. Chan, Timothy C.Y. & Lee, Taewoo, 2018. "Trade-off preservation in inverse multi-objective convex optimization," European Journal of Operational Research, Elsevier, vol. 270(1), pages 25-39.
    13. Chen, Lu & Chen, Yuyi & Langevin, André, 2021. "An inverse optimization approach for a capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1087-1098.
    14. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    15. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).
    16. Xiyuan Ren & Joseph Y. J. Chow, 2023. "Nonparametric estimation of k-modal taste heterogeneity for group level agent-based mixed logit," Papers 2309.13159, arXiv.org.
    17. András Kovács, 2021. "Inverse optimization approach to the identification of electricity consumer models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 521-537, June.
    18. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    19. Justin J. Boutilier & Timothy C. Y. Chan, 2023. "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 64-83, January.
    20. Yu, Shi & Wang, Haoran & Dong, Chaosheng, 2023. "Learning risk preferences from investment portfolios using inverse optimization," Research in International Business and Finance, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:3:p:829-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.