IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A maximum entropy approach to the newsvendor problem with partial information

Listed author(s):
  • Andersson, Jonas
  • Jörnsten, Kurt
  • Nonås, Sigrid Lise
  • Sandal, Leif
  • Ubøe, Jan

In this paper, we consider the newsvendor model under partial information, i.e., where the demand distribution D is partly unknown. We focus on the classical case where the retailer only knows the expectation and variance of D. The standard approach is then to determine the order quantity using conservative rules such as minimax regret or Scarf’s rule. We compute instead the most likely demand distribution in the sense of maximum entropy. We then compare the performance of the maximum entropy approach with minimax regret and Scarf’s rule on large samples of randomly drawn demand distributions. We show that the average performance of the maximum entropy approach is considerably better than either alternative, and more surprisingly, that it is in most cases a better hedge against bad results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0377221713000787
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 228 (2013)
Issue (Month): 1 ()
Pages: 190-200

as
in new window

Handle: RePEc:eee:ejores:v:228:y:2013:i:1:p:190-200
DOI: 10.1016/j.ejor.2013.01.031
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Jörnsten, Kurt & Lise Nonås, Sigrid & Sandal, Leif & Ubøe, Jan, 2012. "Transfer of risk in the newsvendor model with discrete demand," Omega, Elsevier, vol. 40(3), pages 404-414.
  2. Yingjie Lan & Michael O. Ball & Itir Z. Karaesmen, 2011. "Regret in Overbooking and Fare-Class Allocation for Single Leg," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 194-208, December.
  3. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
  4. Sandal, Leif K. & Ubøe, Jan, 2012. "Stackelberg equilibria in a multiperiod vertical contracting model with uncertain and price-dependent demand," Discussion Papers 2012/2, Department of Business and Management Science, Norwegian School of Economics.
  5. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
  6. Lee, Chih-Ming & Hsu, Shu-Lu, 2011. "The effect of advertising on the distribution-free newsboy problem," International Journal of Production Economics, Elsevier, vol. 129(1), pages 217-224, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:228:y:2013:i:1:p:190-200. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.