IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i2p508-517.html
   My bibliography  Save this article

Optimal fleet composition and periodic routing of offshore supply vessels

Author

Listed:
  • Halvorsen-Weare, Elin E.
  • Fagerholt, Kjetil
  • Nonås, Lars Magne
  • Asbjørnslett, Bjørn Egil

Abstract

The supply vessel planning problem is a maritime transportation problem faced by amongst others the energy company Statoil. A set of offshore installations requires supplies from an onshore supply depot on a regular basis, a service performed by a fleet of offshore supply vessels. The problem consists of determining the optimal fleet composition of offshore supply vessels and their corresponding weekly voyages and schedules. We present a voyage-based solution method for the supply vessel planning problem. A computational study shows how the solution method can be used to solve real-life problems. Statoil has implemented a planning tool based on the voyage-based solution method and reports significant savings.

Suggested Citation

  • Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:508-517
    DOI: 10.1016/j.ejor.2012.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baptista, Susana & Oliveira, Rui Carvalho & Zuquete, Eduardo, 2002. "A period vehicle routing case study," European Journal of Operational Research, Elsevier, vol. 139(2), pages 220-229, June.
    2. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    3. I Gribkovskaia & G Laporte & A Shlopak, 2008. "A tabu search heuristic for a routing problem arising in servicing of offshore oil and gas platforms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1449-1459, November.
    4. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    5. J C S Brandão & A Mercer, 1998. "The multi-trip vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 49(8), pages 799-805, August.
    6. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    7. Brandao, Jose & Mercer, Alan, 1997. "A tabu search algorithm for the multi-trip vehicle routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 180-191, July.
    8. Bjørnar Aas & Øyvind Halskau Sr & Stein W Wallace, 2009. "The role of supply vessels in offshore logistics," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(3), pages 302-325, September.
    9. Mourgaya, M. & Vanderbeck, F., 2007. "Column generation based heuristic for tactical planning in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1028-1041, December.
    10. Fagerholt, Kjetil & Lindstad, Håkon, 2000. "Optimal policies for maintaining a supply service in the Norwegian Sea," Omega, Elsevier, vol. 28(3), pages 269-275, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    2. Thomas Borthen & Henrik Loennechen & Xin Wang & Kjetil Fagerholt & Thibaut Vidal, 2018. "A genetic search-based heuristic for a fleet size and periodic routing problem with application to offshore supply planning," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 121-150, June.
    3. Kaiser, Mark J., 2015. "Offshore Service Vessel activity forecast and regulatory modeling in the U.S. Gulf of Mexico, 2012–2017," Marine Policy, Elsevier, vol. 57(C), pages 132-146.
    4. Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.
    5. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    6. Norlund, Ellen Karoline & Gribkovskaia, Irina & Laporte, Gilbert, 2015. "Supply vessel planning under cost, environment and robustness considerations," Omega, Elsevier, vol. 57(PB), pages 271-281.
    7. Vieira, Bruno S. & Ribeiro, Glaydston M. & Bahiense, Laura & Cruz, Roberto & Mendes, André B. & Laporte, Gilbert, 2021. "Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions," European Journal of Operational Research, Elsevier, vol. 295(3), pages 908-923.
    8. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    9. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    10. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    11. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.
    12. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    13. Ulsrud, Karl Petter & Vandvik, Anders Helgeland & Ormevik, Andreas Breivik & Fagerholt, Kjetil & Meisel, Frank, 2022. "A time-dependent vessel routing problem with speed optimization," European Journal of Operational Research, Elsevier, vol. 303(2), pages 891-907.
    14. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    16. Wu, Lingxiao & Wang, Shuaian & Laporte, Gilbert, 2021. "The Robust Bulk Ship Routing Problem with Batched Cargo Selection," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 124-159.
    17. Santos, A.M.P. & Fagerholt, Kjetil & Laporte, Gilbert & Guedes Soares, C., 2022. "A stochastic optimization approach for the supply vessel planning problem under uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 209-228.
    18. Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
    19. Fischer, Andreas & Nokhart, Håkon & Olsen, Henrik & Fagerholt, Kjetil & Rakke, Jørgen Glomvik & Stålhane, Magnus, 2016. "Robust planning and disruption management in roll-on roll-off liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 51-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
    2. Vieira, Bruno S. & Ribeiro, Glaydston M. & Bahiense, Laura & Cruz, Roberto & Mendes, André B. & Laporte, Gilbert, 2021. "Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions," European Journal of Operational Research, Elsevier, vol. 295(3), pages 908-923.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José & Yaman, Hande, 2019. "The periodic vehicle routing problem with driver consistency," European Journal of Operational Research, Elsevier, vol. 273(2), pages 575-584.
    5. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    6. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    7. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    8. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.
    9. Tang, Jiafu & Yu, Yang & Li, Jia, 2015. "An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and delivery of customers to the airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 114-132.
    10. Aristide Mingozzi & Roberto Roberti & Paolo Toth, 2013. "An Exact Algorithm for the Multitrip Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 193-207, May.
    11. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    12. Sinem Kınay Savaşer & Bahar Yetis Kara, 2022. "Mobile healthcare services in rural areas: an application with periodic location routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 875-910, September.
    13. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    14. Fabien Tricoire & Nathalie Bostel & Pierre Dejax & Pierre Guez, 2013. "Exact and hybrid methods for the multiperiod field service routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 359-377, March.
    15. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    16. Ana Maria Anaya-Arenas & Thomas Chabot & Jacques Renaud & Angel Ruiz, 2016. "Biomedical sample transportation in the province of Quebec: a case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 602-615, January.
    17. Norlund, Ellen Karoline & Gribkovskaia, Irina & Laporte, Gilbert, 2015. "Supply vessel planning under cost, environment and robustness considerations," Omega, Elsevier, vol. 57(PB), pages 271-281.
    18. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.
    19. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    20. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Assessing and improving management practices when planning packaging waste collection systems," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 116-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:508-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.