IDEAS home Printed from
   My bibliography  Save this article

On the set of imputations induced by the k-additive core


  • Grabisch, Michel
  • Li, Tong


An extension to the classical notion of core is the notion of k-additive core, that is, the set of k-additive games which dominate a given game, where a k-additive game has its Möbius transform (or Harsanyi dividends) vanishing for subsets of more than k elements. Therefore, the 1-additive core coincides with the classical core. The advantages of the k-additive core is that it is never empty once k [greater-or-equal, slanted] 2, and that it preserves the idea of coalitional rationality. However, it produces k-imputations, that is, imputations on individuals and coalitions of at most k individuals, instead of a classical imputation. Therefore one needs to derive a classical imputation from a k-order imputation by a so-called sharing rule. The paper investigates what set of imputations the k-additive core can produce from a given sharing rule.

Suggested Citation

  • Grabisch, Michel & Li, Tong, 2011. "On the set of imputations induced by the k-additive core," European Journal of Operational Research, Elsevier, vol. 214(3), pages 697-702, November.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:697-702

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    2. Miranda, Pedro & Grabisch, Michel, 2010. "k-Balanced games and capacities," European Journal of Operational Research, Elsevier, vol. 200(2), pages 465-472, January.
    3. Estevez-Fernandez, Arantza & Borm, Peter & Hamers, Herbert, 2006. "On the core of multiple longest traveling salesman games," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1816-1827, November.
    4. repec:hal:journl:halshs-00445073 is not listed on IDEAS
    5. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    6. repec:hal:journl:hal-00321625 is not listed on IDEAS
    7. Hinojosa, M. A. & Marmol, A. M. & Thomas, L. C., 2005. "Core, least core and nucleolus for multiple scenario cooperative games," European Journal of Operational Research, Elsevier, vol. 164(1), pages 225-238, July.
    8. Michel Grabisch & Pedro Miranda, 2008. "On the vertices of the k-additive core," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00321625, HAL.
    9. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    10. Pulido, Manuel A. & Sanchez-Soriano, Joaquin, 2006. "Characterization of the core in games with restricted cooperation," European Journal of Operational Research, Elsevier, vol. 175(2), pages 860-869, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    2. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    3. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games," Documents de travail du Centre d'Economie de la Sorbonne 16081, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:697-702. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.