IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i3p644-655.html
   My bibliography  Save this article

Simulation metamodeling with dynamic Bayesian networks

Author

Listed:
  • Poropudas, Jirka
  • Virtanen, Kai

Abstract

This paper presents a novel approach to simulation metamodeling using dynamic Bayesian networks (DBNs) in the context of discrete event simulation. A DBN is a probabilistic model that represents the joint distribution of a sequence of random variables and enables the efficient calculation of their marginal and conditional distributions. In this paper, the construction of a DBN based on simulation data and its utilization in simulation analyses are presented. The DBN metamodel allows the study of the time evolution of simulation by tracking the probability distribution of the simulation state over the duration of the simulation. This feature is unprecedented among existing simulation metamodels. The DBN metamodel also enables effective what-if analysis which reveals the conditional evolution of the simulation. In such an analysis, the simulation state at a given time is fixed and the probability distributions representing the state at other time instants are updated. Simulation parameters can be included in the DBN metamodel as external random variables. Then, the DBN offers a way to study the effects of parameter values and their uncertainty on the evolution of the simulation. The accuracy of the analyses allowed by DBNs is studied by constructing appropriate confidence intervals. These analyses could be conducted based on raw simulation data but the use of DBNs reduces the duration of repetitive analyses and is expedited by available Bayesian network software. The construction and analysis capabilities of DBN metamodels are illustrated with two example simulation studies.

Suggested Citation

  • Poropudas, Jirka & Virtanen, Kai, 2011. "Simulation metamodeling with dynamic Bayesian networks," European Journal of Operational Research, Elsevier, vol. 214(3), pages 644-655, November.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:644-655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711004127
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C. & Deflandre, David, 2006. "Validation of regression metamodels in simulation: Bootstrap approach," European Journal of Operational Research, Elsevier, vol. 170(1), pages 120-131, April.
    2. Hamad, Husam & Al-Hamdan, Sami, 2007. "Discovering metamodels' quality-of-fit for simulation via graphical techniques," European Journal of Operational Research, Elsevier, vol. 178(2), pages 543-559, April.
    3. Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence diagrams for representing and solving games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.
    4. Robert W. Blanning, 1974. "The Sources and Uses of Sensitivity Information," Interfaces, INFORMS, vol. 4(4), pages 32-38, August.
    5. Reis dos Santos, M. Isabel & Porta Nova, Acacio M.O., 2006. "Statistical fitting and validation of non-linear simulation metamodels: A case study," European Journal of Operational Research, Elsevier, vol. 171(1), pages 53-63, May.
    6. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    7. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    8. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    9. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, April.
    10. Hussain, Mohammed F. & Barton, Russel R. & Joshi, Sanjay B., 2002. "Metamodeling: Radial basis functions, versus polynomials," European Journal of Operational Research, Elsevier, vol. 138(1), pages 142-154, April.
    11. Ville Mattila & Kai Virtanen & Tuomas Raivio, 2008. "Improving Maintenance Decision Making in the Finnish Air Force Through Simulation," Interfaces, INFORMS, vol. 38(3), pages 187-201, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabir, Golam & Tesfamariam, Solomon & Francisque, Alex & Sadiq, Rehan, 2015. "Evaluating risk of water mains failure using a Bayesian belief network model," European Journal of Operational Research, Elsevier, vol. 240(1), pages 220-234.
    2. Michael Thorwarth & Wael Rashwan & Amr Arisha, 2016. "An analytical representation of flexible resource allocation in hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 148-165, June.
    3. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2019. "Portfolio optimization of safety measures for the prevention of time-dependent accident scenarios," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott L. Rosen & Christopher P. Saunders & Samar K Guharay, 2015. "A Structured Approach for Rapidly Mapping Multilevel System Measures via Simulation Metamodeling," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 87-101, January.
    2. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    3. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    4. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    5. Michael C. Fu & Huashuai Qu, 2014. "Regression Models Augmented with Direct Stochastic Gradient Estimators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 484-499, August.
    6. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    7. Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.
    8. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    9. Jack P. C. Kleijnen, 2017. "Comment on Park et al.’s “Robust Kriging in computer experiments”," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 739-740, June.
    10. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    11. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    12. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    13. Jin, Ding & Hedtrich, Johannes & Henning, Christian, 2018. "Applying Meta modeling for extended CGE-modeling: Sample techniques and potential application," Conference papers 332947, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Discussion Paper 2011-015, Tilburg University, Center for Economic Research.
    15. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    16. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    17. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Discussion Paper 2014-076, Tilburg University, Center for Economic Research.
    18. Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Other publications TiSEM dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
    19. Seidel, Claudia & Shang, Linmei & Britz, Wolfgang, 2023. "A critical assessment of neural networks as meta-model of a farm optimization model," Discussion Papers 338200, University of Bonn, Institute for Food and Resource Economics.
    20. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:644-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.