IDEAS home Printed from
   My bibliography  Save this paper

Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)


  • Kleijnen, Jack P.C.

    (Tilburg University, Center For Economic Research)


Abstract: This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author’s extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels. The analysis of these metamodels may use parametric bootstrapping for deterministic simulation or distribution-free bootstrapping (or resampling) for random simulation. The survey covers: (1) Simulation-optimization through "efficient global optimization" (EGO) using "expected improvement" (EI); this EI uses the Kriging predictor variance, which can be estimated through parametric bootstrapping accounting for estimation of the Kriging parameters. (2) Optimization with constraints for multiple random simulation outputs and deterministic inputs through mathematical programming applied to Kriging metamodels validated through distribution-free bootstrapping. (3) Taguchian robust optimization for uncertain environments, using mathematical programming— applied to Kriging metamodels— and distribution- free bootstrapping to estimate the variability of the Kriging metamodels and the resulting robust solution. (4) Bootstrapping for improving convexity or preserving monotonicity of the Kriging metamodel.

Suggested Citation

  • Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:6ac4e049-ad86-447f-aeec-ad5d9ccc7248

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kleijnen, Jack P.C. & Deflandre, David, 2006. "Validation of regression metamodels in simulation: Bootstrap approach," European Journal of Operational Research, Elsevier, vol. 170(1), pages 120-131, April.
    2. Jack Kleijnen & Wim Beers & Inneke Nieuwenhuyse, 2012. "Expected improvement in efficient global optimization through bootstrapped kriging," Journal of Global Optimization, Springer, vol. 54(1), pages 59-73, September.
    3. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    4. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    5. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    6. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    7. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    8. D den Hertog & J P C Kleijnen & A Y D Siem, 2006. "The correct Kriging variance estimated by bootstrapping," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 400-409, April.
    9. Novikov, Ilya & Oberman, Bernice, 2007. "Optimization of large simulations using statistical software," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2747-2752, February.
    10. Dellino, Gabriella & Kleijnen, Jack P.C. & Meloni, Carlo, 2010. "Robust optimization in simulation: Taguchi and Response Surface Methodology," International Journal of Production Economics, Elsevier, vol. 125(1), pages 52-59, May.
    11. Christian Dehlendorff & Murat Kulahci & Klaus Kaae Andersen, 2011. "Designing simulation experiments with controllable and uncontrollable factors for applications in healthcare," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(1), pages 31-49, January.
    12. Yanikoglu, I. & den Hertog, D. & Kleijnen, Jack P.C., 2013. "Adjustable Robust Parameter Design with Unknown Distributions," Discussion Paper 2013-022, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    More about this item


    simulation; optimization; stochastic process; non-linear programming; risk;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:6ac4e049-ad86-447f-aeec-ad5d9ccc7248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.