IDEAS home Printed from
   My bibliography  Save this article

Validating vehicle routing zone construction using Monte Carlo simulation


  • Bard, Jonathan F.
  • Jarrah, Ahmad I.
  • Zan, Jing


The primary purpose of this paper is to validate a clustering procedure used to construct contiguous vehicle routing zones (VRZs) in metropolitan regions. Given a set of customers with random demand for pickups and deliveries over the day, the goal of the design problem is to cluster the customers into zones that can be serviced by a single vehicle. Monte Carlo simulation is used to determine the feasibility of the zones with respect to package count and tour time. For each replication, a separate probabilistic traveling salesman problem (TSP) is solved for each zone. For the case where deliveries must precede pickups, a heuristic approach to the TSP is developed and evaluated, also using Monte Carlo simulation. In the testing, performance is measured by overall travel costs and the probability of constraint violations. Gaps in tour length, tour time and tour cost are the measure used when comparing exact and heuristic TSP solutions. To test the methodology, a series of experiments were conducted using data provided by a leading shipping carrier for the Pittsburgh area. Currently, the region is divided into 73 VRZs, compared to 64 indicated by the clustering procedure. The simulation results showed that a redesign would yield approximately $334,360 in annual savings without any noticeable deterioration in service. In addition, when the heuristic TSP model was solved in place of the exact model, the average gap in tour duration increased by only 0.16Â hours and 0.2Â hours for the cases of 73 clusters and 64 clusters, respectively, indicating a small upward bias. However, runtimes decreased by almost 70%.

Suggested Citation

  • Bard, Jonathan F. & Jarrah, Ahmad I. & Zan, Jing, 2010. "Validating vehicle routing zone construction using Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 206(1), pages 73-85, October.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:73-85

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hall, Randolph W., 1996. "Pickup and delivery systems for overnight carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 173-187, May.
    2. Toth, Paolo & Vigo, Daniele, 1999. "A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 113(3), pages 528-543, March.
    3. Chiou, Yu-Chiun & Lan, Lawrence W., 2001. "Genetic clustering algorithms," European Journal of Operational Research, Elsevier, vol. 135(2), pages 413-427, December.
    4. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    5. Bard, Jonathan F. & Jarrah, Ahmad I., 2009. "Large-scale constrained clustering for rationalizing pickup and delivery operations," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 542-561, June.
    6. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    7. Newell, Gordon F. & Daganzo, Carlos F., 1986. "Design of multiple-vehicle delivery tours--I a ring-radial network," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 345-363, October.
    8. Mourgaya, M. & Vanderbeck, F., 2007. "Column generation based heuristic for tactical planning in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1028-1041, December.
    9. Taylor, G. Don & Whicker, Gary L. & Usher, John S., 2001. "Multi-zone dispatching in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(5), pages 375-390, November.
    10. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    11. Andreas Drexl & Knut Haase, 1999. "Fast Approximation Methods for Sales Force Deployment," Management Science, INFORMS, vol. 45(10), pages 1307-1323, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bard, Jonathan F. & Jarrah, Ahmad I., 2013. "Integrating commercial and residential pickup and delivery networks: A case study," Omega, Elsevier, vol. 41(4), pages 706-720.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:73-85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.