IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v177y2007i3p1720-1733.html
   My bibliography  Save this article

A goal programming approach to vehicle routing problems with soft time windows

Author

Listed:
  • Calvete, Herminia I.
  • Gale, Carmen
  • Oliveros, Maria-Jose
  • Sanchez-Valverde, Belen

Abstract

No abstract is available for this item.

Suggested Citation

  • Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
  • Handle: RePEc:eee:ejores:v:177:y:2007:i:3:p:1720-1733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00650-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2004. "A decision support system for a real vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 153(3), pages 593-606, March.
    3. G Ioannou & M Kritikos & G Prastacos, 2001. "A greedy look-ahead heuristic for the vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 523-537, May.
    4. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    5. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    6. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    7. A. W. J. Kolen & A. H. G. Rinnooy Kan & H. W. J. M. Trienekens, 1987. "Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 35(2), pages 266-273, April.
    8. G Ioannou & M N Kritikos, 2004. "A synthesis of assignment and heuristic solutions for vehicle routing with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 2-11, January.
    9. Yiannis A. Koskosidis & Warren B. Powell & Marius M. Solomon, 1992. "An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints," Transportation Science, INFORMS, vol. 26(2), pages 69-85, May.
    10. Min, Hokey, 1991. "A multiobjective vehicle routing problem with soft time windows: the case of a public library distribution system," Socio-Economic Planning Sciences, Elsevier, vol. 25(3), pages 179-188.
    11. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    12. Niklas Kohl & Oli B. G. Madsen, 1997. "An Optimization Algorithm for the Vehicle Routing Problem with Time Windows Based on Lagrangian Relaxation," Operations Research, INFORMS, vol. 45(3), pages 395-406, June.
    13. Jonathan F. Bard & George Kontoravdis & Gang Yu, 2002. "A Branch-and-Cut Procedure for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 36(2), pages 250-269, May.
    14. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    15. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    2. Antonio Martinez‐Sykora & Tolga Bektaş, 2015. "Transformations of node‐balanced routing problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 370-387, August.
    3. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    4. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    5. Liu, Weihua & Wang, Qian & Mao, Qiaomei & Wang, Shuqing & Zhu, Donglei, 2015. "A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP’s operation time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 189-215.
    6. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    7. Liang Sun, 2022. "Modeling and evolutionary algorithm for solving a multi-depot mixed vehicle routing problem with uncertain travel times," Journal of Heuristics, Springer, vol. 28(5), pages 619-651, December.
    8. Weihua Liu & Yi Yang & Shuqing Wang & Enze Bai, 2017. "A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement," Annals of Operations Research, Springer, vol. 257(1), pages 183-206, October.
    9. C E Cortés & M Gendreau & D Leng & A Weintraub, 2011. "A simulation-based approach for fleet design in a technician dispatch problem with stochastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1510-1523, August.
    10. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    11. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    12. V M Miori, 2011. "A multiple objective goal programming approach to the truckload routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1524-1532, August.
    13. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    14. Xianlong Ge & Yuanzhi Jin & Long Zhang, 2023. "Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 557-586, January.
    15. Kuhn, Heinrich & Schubert, Daniel & Holzapfel, Andreas, 2021. "Integrated order batching and vehicle routing operations in grocery retail – A General Adaptive Large Neighborhood Search algorithm," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1003-1021.
    16. Bo Sun & Ming Wei & Senlai Zhu, 2018. "Optimal Design of Demand-Responsive Feeder Transit Services with Passengers’ Multiple Time Windows and Satisfaction," Future Internet, MDPI, vol. 10(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Kabcome & T. Mouktonglang, 2015. "Vehicle Routing Problem for Multiple Product Types, Compartments, and Trips with Soft Time Windows," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-9, July.
    2. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    3. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    4. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    5. Z Fu & R Eglese & L Y O Li, 2008. "A unified tabu search algorithm for vehicle routing problems with soft time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 663-673, May.
    6. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    7. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    8. Russell, Robert A. & Chiang, Wen-Chyuan, 2006. "Scatter search for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 169(2), pages 606-622, March.
    9. Ioannou, George & Kritikos, Manolis & Prastacos, Gregory, 2003. "A problem generator-solver heuristic for vehicle routing with soft time windows," Omega, Elsevier, vol. 31(1), pages 41-53, February.
    10. Li, Haibing & Lim, Andrew, 2003. "Local search with annealing-like restarts to solve the VRPTW," European Journal of Operational Research, Elsevier, vol. 150(1), pages 115-127, October.
    11. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    12. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    13. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    14. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    15. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    16. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    17. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    18. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    19. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    20. G W Kinney & R R Hill & J T Moore, 2005. "Devising a quick-running heuristic for an unmanned aerial vehicle (UAV) routing system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 776-786, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:177:y:2007:i:3:p:1720-1733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.