IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v26y2023icp139-152.html
   My bibliography  Save this article

A New Statistic for Bayesian Hypothesis Testing

Author

Listed:
  • Chen, Su
  • Walker, Stephen G.

Abstract

A new Bayesian–inspired statistic for hypothesis testing is proposed which compares two posterior distributions; the observed posterior and the expected posterior under the null model. The Kullback–Leibler divergence between the two posterior distributions yields a test statistic which can be interpreted as a penalized log–Bayes factor with the penalty term converging to a constant as the sample size increases. Hence, asymptotically, the statistic behaves as a Bayes factor. Viewed as a penalized Bayes factor, this approach solves the long standing issue of using improper priors with the Bayes factor, since only posterior summaries are needed for the new statistic. Further motivation for the new statistic is a minimal move from the Bayes factor which requires no tuning nor splitting of data into training and inference, and can use improper priors. Critical regions for the test can be assessed using frequentist notions of Type I error.

Suggested Citation

  • Chen, Su & Walker, Stephen G., 2023. "A New Statistic for Bayesian Hypothesis Testing," Econometrics and Statistics, Elsevier, vol. 26(C), pages 139-152.
  • Handle: RePEc:eee:ecosta:v:26:y:2023:i:c:p:139-152
    DOI: 10.1016/j.ecosta.2021.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221001246
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Walker & Nils Lid Hjort, 2001. "On Bayesian consistency," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 811-821.
    2. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    3. Stephane Shao & Pierre E. Jacob & Jie Ding & Vahid Tarokh, 2019. "Bayesian Model Comparison with the Hyvärinen Score: Computation and Consistency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1826-1837, October.
    4. Dawid, A. Philip & Musio, Monica & Columbu, Silvia, 2017. "A note on Bayesian model selection for discrete data using proper scoring rules," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 101-106.
    5. repec:dau:papers:123456789/1908 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    2. Tsionas, Mike G., 2021. "Comparison of stochastic frontier models using the Hyvärinen factor," Economics Letters, Elsevier, vol. 202(C).
    3. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    4. D. Fouskakis, 2019. "Priors via imaginary training samples of sufficient statistics for objective Bayesian hypothesis testing," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 179-199, December.
    5. Ho, Chi-san & Damien, Paul & Walker, Stephen, 2017. "Bayesian mode regression using mixtures of triangular densities," Journal of Econometrics, Elsevier, vol. 197(2), pages 273-283.
    6. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    7. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    8. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    9. José M. Bernardo, 2003. "Discussion," International Statistical Review, International Statistical Institute, vol. 71(2), pages 307-314, August.
    10. Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
    11. Elías Moreno & Carmen Martínez & Francisco–José Vázquez–Polo, 2021. "Objective Bayesian model choice for non-nested families: the case of the Poisson and the negative binomial," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 255-273, March.
    12. M. J. Bayarri & G. García‐Donato, 2008. "Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
    13. De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
    14. Stephen Walker & Eduardo Gutiérrez-Peña, 2011. "A decision-theoretical view of default priors," Theory and Decision, Springer, vol. 70(1), pages 1-11, January.
    15. Majid Asadi & Karthik Devarajan & Nader Ebrahimi & Ehsan Soofi & Lauren Spirko‐Burns, 2022. "Elaboration Models with Symmetric Information Divergence," International Statistical Review, International Statistical Institute, vol. 90(3), pages 499-524, December.
    16. Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019. "Objective Bayesian testing for the linear combinations of normal means," Statistical Papers, Springer, vol. 60(1), pages 147-172, February.
    17. Jeremy Fouliard & Michael Howell & Hélène Rey & Vania Stavrakeva, 2020. "Answering the Queen: Machine Learning and Financial Crises," NBER Working Papers 28302, National Bureau of Economic Research, Inc.
    18. Ebrahimi, Nader & Jalali, Nima Y. & Soofi, Ehsan S., 2014. "Comparison, utility, and partition of dependence under absolutely continuous and singular distributions," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 32-50.
    19. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    20. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:26:y:2023:i:c:p:139-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.