IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v196y2017i1p99-110.html
   My bibliography  Save this article

A multivariate stochastic unit root model with an application to derivative pricing

Author

Listed:
  • Lieberman, Offer
  • Phillips, Peter C.B.

Abstract

This paper extends recent findings of Lieberman and Phillips (2014) on stochastic unit root (STUR) models to a multivariate case including asymptotic theory for estimation of the model’s parameters. The extensions are useful for applications of STUR modeling and because they lead to a generalization of the Black–Scholes formula for derivative pricing. In place of the standard assumption that the price process follows a geometric Brownian motion, we derive a new form of the Black–Scholes equation that allows for a multivariate time varying coefficient element in the price equation. The corresponding formula for the value of a European-type call option is obtained and shown to extend the existing option price formula in a manner that embodies the effect of a stochastic departure from a unit root. An empirical application reveals that the new model substantially reduces the average percentage pricing error of the Black–Scholes and Heston’s (1993) stochastic volatility (with zero volatility risk premium) pricing schemes in most moneyness-maturity categories considered.

Suggested Citation

  • Lieberman, Offer & Phillips, Peter C.B., 2017. "A multivariate stochastic unit root model with an application to derivative pricing," Journal of Econometrics, Elsevier, vol. 196(1), pages 99-110.
  • Handle: RePEc:eee:econom:v:196:y:2017:i:1:p:99-110
    DOI: 10.1016/j.jeconom.2016.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616301695
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    2. Björk, Tomas & Hult, Henrik, 2005. "A Note on Wick Products and the Fractional Black-Scholes Model," SSE/EFI Working Paper Series in Economics and Finance 596, Stockholm School of Economics.
    3. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    4. Peter C. B. Phillips, 2015. "Edmond Malinvaud: a tribute to his contributions in econometrics," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-13, June.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    7. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    8. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2006. "Empirical Similarity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 433-444, August.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1032-1059, August.
    13. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    14. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    17. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    18. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Autoregression; Derivative; Diffusion; Options; Similarity; Stochastic unit root; Time-varying coefficients;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:196:y:2017:i:1:p:99-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.