IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Semiparametric estimation of binary response models with endogenous regressors

  • Rothe, Christoph

In this paper, we propose a two-step semiparametric maximum likelihood (SML) estimator for the coefficients of a single index binary choice model with endogenous regressors when identification is achieved via a control function approach. The first step consists of estimating a reduced form equation for the endogenous regressors and extracting the corresponding residuals. In the second step, the latter are added as control variates to the outcome equation, which is in turn estimated by SML. We establish the estimator's -consistency and asymptotic normality. In a simulation study, we compare the properties of our estimator with those of existing alternatives, highlighting the advantages of our approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 153 (2009)
Issue (Month): 1 (November)
Pages: 51-64

in new window

Handle: RePEc:eee:econom:v:153:y:2009:i:1:p:51-64
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  2. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, 09.
  3. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  4. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-85, May.
  5. Whitney K. Newey, 2007. "NONPARAMETRIC CONTINUOUS/DISCRETE CHOICE MODELS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1429-1439, November.
  6. Klein, R.W. & Spady, R.H., 1991. "An Efficient Semiparametric Estimator for Binary Response Models," Papers 70, Bell Communications - Economic Research Group.
  7. repec:cep:stiecm:/2003/450 is not listed on IDEAS
  8. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.
  9. Yingcun Xia & Howell Tong & W. K. Li & Li-Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410.
  10. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
  11. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
  12. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
  13. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, 09.
  14. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-81, November.
  15. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  16. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(06), pages 1112-1137, December.
  17. Newey, Whitney K., 1987. "Efficient estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 36(3), pages 231-250, November.
  18. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
  19. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
  20. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  21. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
  22. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
  23. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:153:y:2009:i:1:p:51-64. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.