IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v486y2023ics0304380023002600.html
   My bibliography  Save this article

Landscape ecology and urban spatial configuration: Exploring a methodological relationship. Application in Pelotas, Brazil

Author

Listed:
  • Alves d'Acampora, Bárbara Heliodora
  • Maraschin, Clarice
  • Taufemback, Cleiton Guollo

Abstract

Urbanization has been expanding rapidly in Brazil, negatively impacting the natural environment. Achieving sustainable development requires understanding the interdependencies between the social and natural worlds and finding a balance between them. Resilient urban planning considering green infrastructure can generate socio-environmental benefits through ecological connections. To achieve this, an integrated study between the social and environmental spheres is required, which are often developed separately. Thus, this investigation aims to develop a socio-environmental analysis by adopting urban configuration and landscape ecology models and subsequently comparing their respective outcomes. To this end, two models of spatial networks were examined in a sector of Pelotas, Brazil, based on graph theory and centrality measures. The urban configuration model was used to analyze human mobility in urban networks, while the landscape ecology model was used to study the butterfly species Heliconius erato phyllis in ecological networks. Our findings show no significant correlation between the outcomes generated by the two models, indicating a lack of cohesion in the location and connection of green infrastructure in the study area. This methodology represents a valuable tool for urban planners and researchers seeking to gain new insights into the performance of urban green areas while considering both human and species-related factors.

Suggested Citation

  • Alves d'Acampora, Bárbara Heliodora & Maraschin, Clarice & Taufemback, Cleiton Guollo, 2023. "Landscape ecology and urban spatial configuration: Exploring a methodological relationship. Application in Pelotas, Brazil," Ecological Modelling, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:ecomod:v:486:y:2023:i:c:s0304380023002600
    DOI: 10.1016/j.ecolmodel.2023.110530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. d’Acampora, Bárbara H.A. & Higueras, Ester & Román, Emilia, 2018. "Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil," Ecological Modelling, Elsevier, vol. 384(C), pages 103-110.
    3. Jule Thober & Birgit Müller & Jürgen Groeneveld & Volker Grimm, 2017. "Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    2. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    3. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    4. Shiqin Liu & Carl Higgs & Jonathan Arundel & Geoff Boeing & Nicholas Cerdera & David Moctezuma & Ester Cerin & Deepti Adlakha & Melanie Lowe & Billie Giles-Corti, 2021. "A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data," Papers 2105.08814, arXiv.org.
    5. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    6. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    7. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    8. Jorge Ubirajara Pedreira Junior & Antônio Nélson Rodrigues da Silva & Cira Souza Pitombo, 2022. "Car-Free Day on a University Campus: Determinants of Participation and Potential Impacts on Sustainable Travel Behavior," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    9. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    10. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    11. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    12. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    13. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Brands, Ties & van Oort, Niels & Teller, David, 2021. "Multi-city exploration of built environment and transit mode use: Comparison of Melbourne, Amsterdam and Boston," Journal of Transport Geography, Elsevier, vol. 95(C).
    14. Bowater, David & Stefanakis, Emmanuel, 2023. "Extending the Adapted PageRank Algorithm centrality model for urban street networks using non-local random walks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    15. Boeing, Geoff & Pilgram, Clemens & Lu, Yougeng, 2024. "Urban Street Network Design and Transport-Related Greenhouse Gas Emissions around the World," SocArXiv r32vj, Center for Open Science.
    16. Sadek, Bassel & Doig Godier, Jean & Cassidy, Michael J & Daganzo, Carlos F, 2022. "Traffic signal plans to decongest street grids," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 195-208.
    17. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    18. Olga L Sarmiento & Andrés F Useche & Daniel A Rodriguez & Iryna Dronova & Oscar Guaje & Felipe Montes & Ivana Stankov & Maria Alejandra Wilches & Usama Bilal & Xize Wang & Luis A Guzmán & Fabian Peña , 2021. "Built environment profiles for Latin American urban settings: The SALURBAL study," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-25, October.
    19. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    20. Ali Enes Dingil & Federico Rupi & Joerg Schweizer & Zaneta Stasiskiene & Kasra Aalipour, 2019. "The Role of Culture in Urban Travel Patterns: Quantitative Analyses of Urban Areas Based on Hofstede’s Culture Dimensions," Social Sciences, MDPI, vol. 8(8), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:486:y:2023:i:c:s0304380023002600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.