IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v388y2018icp136-144.html
   My bibliography  Save this article

Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations

Author

Listed:
  • Früh, Linus
  • Kampen, Helge
  • Kerkow, Antje
  • Schaub, Günter A.
  • Walther, Doreen
  • Wieland, Ralf

Abstract

We tested four machine learning methods for their performance in the classification of mosquito species occurrence related to weather variables: support vector machine, random forest, logistic regression and decision tree. The objective was to find a method which showed the most accurate model for the prediction of the potential geographical distribution of Aedes japonicus japonicus, an invasive mosquito species in Germany.

Suggested Citation

  • Früh, Linus & Kampen, Helge & Kerkow, Antje & Schaub, Günter A. & Walther, Doreen & Wieland, Ralf, 2018. "Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations," Ecological Modelling, Elsevier, vol. 388(C), pages 136-144.
  • Handle: RePEc:eee:ecomod:v:388:y:2018:i:c:p:136-144
    DOI: 10.1016/j.ecolmodel.2018.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holloway, Paul & Miller, Jennifer A., 2017. "A quantitative synthesis of the movement concepts used within species distribution modelling," Ecological Modelling, Elsevier, vol. 356(C), pages 91-103.
    2. Costa, Hugo & Ponte, Nuno B. & Azevedo, Eduardo B. & Gil, Artur, 2015. "Fuzzy set theory for predicting the potential distribution and cost-effective monitoring of invasive species," Ecological Modelling, Elsevier, vol. 316(C), pages 122-132.
    3. Wieland, Ralf & Kerkow, Antje & Früh, Linus & Kampen, Helge & Walther, Doreen, 2017. "Automated feature selection for a machine learning approach toward modeling a mosquito distribution," Ecological Modelling, Elsevier, vol. 352(C), pages 108-112.
    4. Liu, Fang & McShea, William J. & Li, Diqiang, 2017. "Correlating habitat suitability with landscape connectivity: A case study of Sichuan golden monkey in China," Ecological Modelling, Elsevier, vol. 353(C), pages 37-46.
    5. Tsonkova, Penka & Böhm, Christian & Quinkenstein, Ansgar & Freese, Dirk, 2015. "Application of partial order ranking to identify enhancement potentials for the provision of selected ecosystem services by different land use strategies," Agricultural Systems, Elsevier, vol. 135(C), pages 112-121.
    6. M. C. Thomson & F. J. Doblas-Reyes & S. J. Mason & R. Hagedorn & S. J. Connor & T. Phindela & A. P. Morse & T. N. Palmer, 2006. "Malaria early warnings based on seasonal climate forecasts from multi-model ensembles," Nature, Nature, vol. 439(7076), pages 576-579, February.
    7. Adi L Tarca & Vincent J Carey & Xue-wen Chen & Roberto Romero & Sorin Drăghici, 2007. "Machine Learning and Its Applications to Biology," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wieland, Ralf & Kuhls, Katrin & Lentz, Hartmut H.K. & Conraths, Franz & Kampen, Helge & Werner, Doreen, 2021. "Combined climate and regional mosquito habitat model based on machine learning," Ecological Modelling, Elsevier, vol. 452(C).
    2. Kerkow, Antje & Wieland, Ralf & Gethmann, Jörn M. & Hölker, Franz & Lentz, Hartmut H.K., 2022. "Linking a compartment model for West Nile virus with a flight simulator for vector mosquitoes," Ecological Modelling, Elsevier, vol. 464(C).
    3. Damiana Ravasi & Francesca Mangili & David Huber & Laura Azzimonti & Lukas Engeler & Nicola Vermes & Giacomo Del Rio & Valeria Guidi & Mauro Tonolla & Eleonora Flacio, 2022. "Risk-Based Mapping Tools for Surveillance and Control of the Invasive Mosquito Aedes albopictus in Switzerland," IJERPH, MDPI, vol. 19(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Gang Wu & Yuxuan Wang & Wu Jiang & Tolutola Oyetunde & Ruilian Yao & Xuehong Zhang & Kazuyuki Shimizu & Yinjie J Tang & Forrest Sheng Bao, 2016. "Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-22, April.
    2. Wieland, Ralf & Kuhls, Katrin & Lentz, Hartmut H.K. & Conraths, Franz & Kampen, Helge & Werner, Doreen, 2021. "Combined climate and regional mosquito habitat model based on machine learning," Ecological Modelling, Elsevier, vol. 452(C).
    3. Singer, Alexander & Schweiger, Oliver & Kühn, Ingolf & Johst, Karin, 2018. "Constructing a hybrid species distribution model from standard large-scale distribution data," Ecological Modelling, Elsevier, vol. 373(C), pages 39-52.
    4. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    5. LonÄ arić, Željka & K. Hackenberger, Branimir, 2013. "Stage and age structured Aedes vexans and Culex pipiens (Diptera: Culicidae) climate-dependent matrix population model," Theoretical Population Biology, Elsevier, vol. 83(C), pages 82-94.
    6. Paulina Phoobane & Muthoni Masinde & Tafadzwanashe Mabhaudhi, 2022. "Predicting Infectious Diseases: A Bibliometric Review on Africa," IJERPH, MDPI, vol. 19(3), pages 1-20, February.
    7. Mohd Danish Khan & Hong Ha Thi Vu & Quang Tuan Lai & Ji Whan Ahn, 2019. "Aggravation of Human Diseases and Climate Change Nexus," IJERPH, MDPI, vol. 16(15), pages 1-26, August.
    8. Aleksandra Konopka & Ryszard Kozera & Lidia Sas-Paszt & Pawel Trzcinski & Anna Lisek, 2023. "Identification of the selected soil bacteria genera based on their geometric and dispersion features," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
    9. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Fernández-Getino, A.P. & Alonso-Prados, J.L. & Santín-Montanyá, M.I., 2018. "Challenges and prospects in connectivity analysis in agricultural systems: Actions to implement policies on land management and carbon storage at EU level," Land Use Policy, Elsevier, vol. 71(C), pages 146-159.
    11. J.M. Milani, 2013. "Ecological conditions affecting mycotoxin production in cereals: a review," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 58(8), pages 405-411.
    12. Bicout, Dominique J. & Vautrin, Mathias & Vignolles, Cecile & Sabatier, Philippe, 2015. "Modeling the dynamics of mosquito breeding sites vs rainfall in Barkedji area, Senegal," Ecological Modelling, Elsevier, vol. 317(C), pages 41-49.
    13. Liu, Fang & McShea, William J. & Li, Diqiang, 2017. "Correlating habitat suitability with landscape connectivity: A case study of Sichuan golden monkey in China," Ecological Modelling, Elsevier, vol. 353(C), pages 37-46.
    14. Lyaqini, S. & Nachaoui, M. & Hadri, A., 2022. "An efficient primal-dual method for solving non-smooth machine learning problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Moreira, Miguel & Fonseca, Catarina & Vergílio, Marta & Calado, Helena & Gil, Artur, 2018. "Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal)," Land Use Policy, Elsevier, vol. 78(C), pages 637-649.
    16. Turvey, Calum G. & Chantarat, Sommarat, 2006. "Weather-Linked Bonds," 2006 Agricultural and Rural Finance Markets in Transition, October 2-3, 2006, Washington, DC 133091, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    17. Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
    18. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    19. R. S. Sparks & T. Keighley & D. Muscatello, 2011. "Optimal exponentially weighted moving average (EWMA) plans for detecting seasonal epidemics when faced with non-homogeneous negative binomial counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2165-2181.
    20. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:388:y:2018:i:c:p:136-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.