IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v360y2017icp252-259.html
   My bibliography  Save this article

Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models

Author

Listed:
  • Zhao, Qing
  • Boomer, G. Scott
  • Silverman, Emily
  • Fleming, Kathy

Abstract

Population dynamics models incorporating density dependence and habitat heterogeneity are useful tools to explain and project the spatiotemporal variation of wildlife abundance. Despite their wide application in ecology and conservation biology, the inference and projection of these models may be problematic when residual spatial autocorrelation (SAC) is found. We aimed to improve the inference and projection of population dynamics models by accounting for residual SAC. We considered three Gompertz models that incorporated density dependence and the effect of wetland habitat to explain and project the abundance of Mallard (Anas platyrhynchos). We compared a conventional model that did not account for residual SAC (ENV) with two novel models accounting for residual SAC, one incorporating a spatial effect (a spatially autocorrelated process error) that did not vary over time (STA) and the other incorporating a spatial effect that varied over time (DYN). We evaluated model inference using data from 1974 to 1998 and projection using data from 1999 to 2010. We then forecasted Mallard abundance from 2011 to 2100 under different levels of wetland habitat loss. The DYN model eliminated residual SAC and had better model fit than the ENV and STA models (ΔD¯=2498.3and1988.8, respectively). The projection coverage rate of the DYN model was the closest to the nominal value among the three models. The DYN model forecasted smaller areas with decrease in Mallard abundance under future wetland habitat loss than the ENV and STA models. The novel and conventional population dynamics models we considered in this study, combined with the practical model evaluation approach, can provide reliable inference and projection of wildlife abundance, and thus have wide application in ecological studies and conservation practices that aim to understand and project the spatiotemporal variation of wildlife abundance under environmental changes. In particular, when conservation decision-making is based on model projections, the DYN may be used to minimize the risk of reducing conservation effort in areas that still have high conservation value, due to its favorable projection performance.

Suggested Citation

  • Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
  • Handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:252-259
    DOI: 10.1016/j.ecolmodel.2017.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017300753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    2. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Beth E Ross & Mevin B Hooten & David N Koons, 2012. "An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    6. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    2. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    3. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    4. G. Vicente & T. Goicoa & P. Fernandez‐Rasines & M. D. Ugarte, 2020. "Crime against women in India: unveiling spatial patterns and temporal trends of dowry deaths in the districts of Uttar Pradesh," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 655-679, February.
    5. Rufener, Marie-Christine & Kinas, Paul Gerhard & Nóbrega, Marcelo Francisco & Lins Oliveira, Jorge Eduardo, 2017. "Bayesian spatial predictive models for data-poor fisheries," Ecological Modelling, Elsevier, vol. 348(C), pages 125-134.
    6. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    7. Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.
    8. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    9. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    10. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    11. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    12. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
    13. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    14. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    15. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    16. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    17. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    18. Shuangshuang Xu & Marco A. R. Ferreira & Erica M. Porter & Christopher T. Franck, 2023. "Bayesian model selection for generalized linear mixed models," Biometrics, The International Biometric Society, vol. 79(4), pages 3266-3278, December.
    19. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    20. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:252-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.