IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v283y2014icp62-69.html
   My bibliography  Save this article

Bayesian model selection: The steepest mountain to climb

Author

Listed:
  • Tenan, Simone
  • O’Hara, Robert B.
  • Hendriks, Iris
  • Tavecchia, Giacomo

Abstract

Following the advent of MCMC engines Bayesian hierarchical models are becoming increasingly common for modelling ecological data. However, the great enthusiasm for model fitting has not yet encompassed the selection of competing models, despite its fundamental role in the inferential process. This contribution is intended as a starting guide for practical implementation of Bayesian model and variable selection into a general purpose software in BUGS language. We explain two well-known procedures, the product space method and the Gibbs variable selection, clarifying theoretical aspects and practical guidelines through applied examples on the comparison of non-nested models and on the selection of variables in a generalized linear model problem. Despite the relatively wide range of available techniques and the difficulties related to the maximization of sampling efficiency, for their conceptual simplicity and ease of implementation the proposed methods represent useful tools for ecologists and conservation biologists that want to close the loop of a Bayesian analysis.

Suggested Citation

  • Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
  • Handle: RePEc:eee:ecomod:v:283:y:2014:i:c:p:62-69
    DOI: 10.1016/j.ecolmodel.2014.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell B. Millar, 2009. "Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors," Biometrics, The International Biometric Society, vol. 65(3), pages 962-969, September.
    2. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    3. Ntzoufras, Ioannis, 2002. "Gibbs Variable Selection using BUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i07).
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Sisson, Scott A., 2005. "Transdimensional Markov Chains: A Decade of Progress and Future Perspectives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1077-1089, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    2. Tenan, S. & Maffioletti, C. & Caccianiga, M. & Compostella, C. & Seppi, R. & Gobbi, M., 2016. "Hierarchical models for describing space-for-time variations in insect population size and sex-ratio along a primary succession," Ecological Modelling, Elsevier, vol. 329(C), pages 18-28.
    3. Palamara, Gian Marco & Dennis, Stuart R. & Haenggi, Corinne & Schuwirth, Nele & Reichert, Peter, 2022. "Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model," Ecological Modelling, Elsevier, vol. 472(C).
    4. Laplanche, Christophe & Leunda, Pedro M. & Boithias, Laurie & Ardaíz, José & Juanes, Francis, 2019. "Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data," Ecological Modelling, Elsevier, vol. 392(C), pages 8-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    2. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    3. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    4. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    5. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    6. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    7. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    8. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    9. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    10. Hui, Francis K.C., 2017. "Model-based simultaneous clustering and ordination of multivariate abundance data in ecology," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 1-10.
    11. Nott, David J. & Leng, Chenlei, 2010. "Bayesian projection approaches to variable selection in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3227-3241, December.
    12. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    13. Oliver J. Rutz & Garrett P. Sonnier, 2019. "VANISH regularization for generalized linear models," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 415-437, December.
    14. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    15. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    16. Feng, Xiangnan & Lu, Bin & Song, Xinyuan & Ma, Shuang, 2019. "Financial literacy and household finances: A Bayesian two-part latent variable modeling approach," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 119-137.
    17. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    18. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    19. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Fernanda B. Rizzato & Roseli A. Leandro & Clarice G.B. Demétrio & Geert Molenberghs, 2016. "A Bayesian approach to analyse overdispersed longitudinal count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2085-2109, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:283:y:2014:i:c:p:62-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.