Calculating effective degrees of freedom for forecast combinations and ensemble models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2024.112137
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Boot, Tom & Nibbering, Didier, 2019.
"Forecasting using random subspace methods,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
- Tom Boot & Didier Nibbering, 2016. "Forecasting Using Random Subspace Methods," Tinbergen Institute Discussion Papers 16-073/III, Tinbergen Institute, revised 11 Aug 2017.
- Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
- A. Mukherjee & K. Chen & N. Wang & J. Zhu, 2015. "On the degrees of freedom of reduced-rank estimators in multivariate regression," Biometrika, Biometrika Trust, vol. 102(2), pages 457-477.
- Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016.
"The forecast combination puzzle: A simple theoretical explanation,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2014. "The Forecast Combination Puzzle: A Simple Theoretical Explanation," Tinbergen Institute Discussion Papers 14-127/III, Tinbergen Institute.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2016. "The forecast combination puzzle: a simple theoretical explanation," Working Papers of Department of Decision Sciences and Information Management, Leuven 532152, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Graham Elliott & Allan Timmermann, 2005.
"Optimal Forecast Combination Under Regime Switching ,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
- Timmermann, Allan & Elliott, Graham, 2004. "Optimal Forecast Combination Under Regime Switching," CEPR Discussion Papers 4649, C.E.P.R. Discussion Papers.
- Kato, Kengo, 2009. "On the degrees of freedom in shrinkage estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1338-1352, August.
- Magnus, Jan R., 2010. "On the concept of matrix derivative," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2200-2206, October.
- Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
- Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Qiu, Yue & Qu, Shaoguang & Shi, Zhentao & Xie, Tian, 2025. "Predicting cryptocurrency volatility: The power of model clustering," Economic Modelling, Elsevier, vol. 144(C).
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Yuying Sun & Shaoxin Hong & Zongwu Cai, 2025. "State-Varying Model Averaging Prediction," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202507, University of Kansas, Department of Economics.
- Antoine Mandel & Amir Sani, 2016.
"Learning Time-Varying Forecast Combinations,"
Documents de travail du Centre d'Economie de la Sorbonne
16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2020. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Discussion Papers LFIN 2020006, Université catholique de Louvain, Louvain Finance (LFIN).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
- Gibbs, Christopher G. & Vasnev, Andrey L., 2024.
"Conditionally optimal weights and forward-looking approaches to combining forecasts,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
- Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
More about this item
JEL classification:
- C - Mathematical and Quantitative Methods
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:247:y:2025:i:c:s0165176524006219. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.