IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v217y2022ics0165176522002130.html
   My bibliography  Save this article

Bi-utility representable orderings on a countable set

Author

Listed:
  • Candeal, Juan C.

Abstract

An elementary characterization of the existence of a bi-utility representation for a partial order on a countable set is presented. The approach followed allows us to develop an algorithm for obtaining all such kind of representations in the finite case.

Suggested Citation

  • Candeal, Juan C., 2022. "Bi-utility representable orderings on a countable set," Economics Letters, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002130
    DOI: 10.1016/j.econlet.2022.110658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176522002130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2022.110658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaofang Qi, 2016. "A characterization of the n-agent Pareto dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 695-706, March.
    2. Qi, Shaofang, 2015. "Paretian partial orders: The two-agent case," Journal of Mathematical Economics, Elsevier, vol. 57(C), pages 38-48.
    3. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    4. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    5. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
    6. Sprumont, Yves, 2001. "Paretian Quasi-orders: The Regular Two-Agent Case," Journal of Economic Theory, Elsevier, vol. 101(2), pages 437-456, December.
    7. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaofang Qi, 2016. "A characterization of the n-agent Pareto dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 695-706, March.
    2. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    3. Bosi, Gianni & Herden, Gerhard, 2016. "On continuous multi-utility representations of semi-closed and closed preorders," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 20-29.
    4. José Carlos R. Alcantud & Gianni Bosi & Magalì Zuanon, 2016. "Richter–Peleg multi-utility representations of preorders," Theory and Decision, Springer, vol. 80(3), pages 443-450, March.
    5. Nishimura, Hiroki & Ok, Efe A., 2016. "Utility representation of an incomplete and nontransitive preference relation," Journal of Economic Theory, Elsevier, vol. 166(C), pages 164-185.
    6. Cosimo Munari, 2021. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Finance and Stochastics, Springer, vol. 25(1), pages 77-99, January.
    7. Paolo Leonetti, 2022. "Expected multi-utility representations of preferences over lotteries," Papers 2210.04739, arXiv.org, revised Jan 2024.
    8. Pivato, Marcus, 2013. "Multiutility representations for incomplete difference preorders," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 196-220.
    9. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    10. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2023. "The classification of preordered spaces in terms of monotones: complexity and optimization," Theory and Decision, Springer, vol. 94(4), pages 693-720, May.
    11. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    12. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.
    13. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    14. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    15. Marcus Pivato, 2020. "Subjective expected utility with a spectral state space," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 249-313, March.
    16. Itzhak Gilboa & Fabio Maccheroni & Massimo Marinacci & David Schmeidler, 2010. "Objective and Subjective Rationality in a Multiple Prior Model," Econometrica, Econometric Society, vol. 78(2), pages 755-770, March.
    17. Eric Danan, 2010. "Randomization vs. Selection: How to Choose in the Absence of Preference?," Management Science, INFORMS, vol. 56(3), pages 503-518, March.
    18. Voorneveld, Mark, 2002. "Characterization of Pareto Dominance," SSE/EFI Working Paper Series in Economics and Finance 487, Stockholm School of Economics.
    19. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    20. Dino Borie, 2020. "Finite expected multi-utility representation," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 325-331, October.

    More about this item

    Keywords

    Incomplete preferences; Bi-utility representation;

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.