IDEAS home Printed from
   My bibliography  Save this article

A Maxmin Approach for the Equilibria of Vector-Valued Games


  • A. Zapata

    () (Universidad de Sevilla)

  • A. M. Mármol

    () (Universidad de Sevilla)

  • L. Monroy

    () (Universidad de Sevilla)

  • M. A. Caraballo

    () (Universidad de Sevilla)


This paper deals with the equilibria of non-cooperative games where the preferences of the players are incomplete and can be represented by vector-valued functions. In the literature, these preferences are frequently approximated by means of additive value functions. However, other value functions can also be considered. We propose a weighted maxmin approach to represent players’ preferences, where the weights are interpreted as the relative importance of the corresponding components of the vector payoffs. We establish the relationship between the equilibria, the weak equilibria and the ideal equilibria of vector-values games and the equilibria of the scalar weighted maxmin games. The potential applicability of the theoretical results is illustrated with the analysis of a vector-valued bimatrix game where all the equilibria are generated, and it is shown how the resulting equilibrium strategies depend on the values of the parameters which represent the importance assigned to the components of the vector-valued payoffs.

Suggested Citation

  • A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
  • Handle: RePEc:spr:grdene:v:28:y:2019:i:2:d:10.1007_s10726-018-9608-4
    DOI: 10.1007/s10726-018-9608-4

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Wakker, Peter P, 2001. "Testing and Characterizing Properties of Nonadditive Measures through Violations of the Sure-Thing Principle," Econometrica, Econometric Society, vol. 69(4), pages 1039-1059, July.
    2. Chateauneuf, Alain & Eichberger, Jurgen & Grant, Simon, 2007. "Choice under uncertainty with the best and worst in mind: Neo-additive capacities," Journal of Economic Theory, Elsevier, vol. 137(1), pages 538-567, November.
    3. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    4. Borm, Peter & Vermeulen, Dries & Voorneveld, Mark, 2003. "The structure of the set of equilibria for two person multicriteria games," European Journal of Operational Research, Elsevier, vol. 148(3), pages 480-493, August.
    5. repec:spr:compst:v:52:y:2000:i:1:p:65-77 is not listed on IDEAS
    6. Borm, P.E.M. & Tijs, S.H. & van den Aarssen, J.C.M., 1988. "Pareto equilibria in multiobjective games," Other publications TiSEM a02573c0-8c7e-409d-bc75-0, Tilburg University, School of Economics and Management.
    7. Mark Voorneveld & Sofia Grahn & Martin Dufwenberg, 2000. "Ideal equilibria in noncooperative multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(1), pages 65-77, September.
    8. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    9. M. Voorneveld, 1999. "Pareto-Optimal Security Strategies as Minimax Strategies of a Standard Matrix Game," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 203-210, July.
    10. M. A. Hinojosa & A. M. Mármol, 2011. "Egalitarianism and Utilitarianism in Multiple Criteria Decision Problems with Partial Information," Group Decision and Negotiation, Springer, vol. 20(6), pages 707-724, November.
    11. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    12. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    13. M. Caraballo & A. Mármol & L. Monroy & E. Buitrago, 2015. "Cournot competition under uncertainty: conservative and optimistic equilibria," Review of Economic Design, Springer;Society for Economic Design, vol. 19(2), pages 145-165, June.
    14. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    15. Efe A. Ok & Pietro Ortoleva & Gil Riella, 2012. "Incomplete Preferences Under Uncertainty: Indecisiveness in Beliefs versus Tastes," Econometrica, Econometric Society, vol. 80(4), pages 1791-1808, July.
    16. L. S. Shapley & Fred D. Rigby, 1959. "Equilibrium points in games with vector payoffs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(1), pages 57-61, March.
    17. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Equilibria; Vector-valued games; Maxmin; Rawlsian function;

    JEL classification:

    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:28:y:2019:i:2:d:10.1007_s10726-018-9608-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.