IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v120y2013i2p206-210.html
   My bibliography  Save this article

Easy and flexible mixture distributions

Author

Listed:
  • Fosgerau, Mogens
  • Mabit, Stefan L.

Abstract

We propose a method to generate flexible mixture distributions that are useful for estimating models such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate essentially any mixture distribution. We test it with good results in a simulation study and on real data.

Suggested Citation

  • Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
  • Handle: RePEc:eee:ecolet:v:120:y:2013:i:2:p:206-210
    DOI: 10.1016/j.econlet.2013.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513001705
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441 Elsevier.
    2. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    3. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, April.
    5. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
    6. Fosgerau, Mogens & Nielsen, Søren Feodor, 2010. "Deconvoluting Preferences And Errors: A Model For Binomial Panel Data," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1846-1854, December.
    7. Bierens, Herman J., 2008. "Semi-Nonparametric Interval-Censored Mixed Proportional Hazard Models: Identification And Consistency Results," Econometric Theory, Cambridge University Press, vol. 24(03), pages 749-794, June.
    8. Fosgerau, Mogens, 2006. "Investigating the distribution of the value of travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 688-707, September.
    9. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    10. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    11. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    12. Headrick, Todd C., 2002. "Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 685-711, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:transb:v:106:y:2017:i:c:p:76-101 is not listed on IDEAS
    2. repec:eee:eejocm:v:27:y:2018:i:c:p:88-96 is not listed on IDEAS
    3. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    4. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    5. Mikołaj Czajkowski & Wiktor Budziński, 2017. "Simulation error in maximum likelihood estimation of discrete choice models," Working Papers 2017-18, Faculty of Economic Sciences, University of Warsaw.
    6. repec:eee:eejocm:v:27:y:2018:i:c:p:97-113 is not listed on IDEAS
    7. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    8. Fosgerau, Mogens & Börjesson, Maria, 2015. "Manipulating a stated choice experiment," Journal of choice modelling, Elsevier, vol. 16(C), pages 43-49.
    9. repec:eee:resene:v:52:y:2018:i:c:p:87-101 is not listed on IDEAS
    10. Hess, Stephane & Daly, Andrew & Dekker, Thijs & Cabral, Manuel Ojeda & Batley, Richard, 2017. "A framework for capturing heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time research," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 126-149.
    11. Jan (J.) Rouwendal, 2017. "Specification Tests for The Multinomial Logit Model Revisited: The Role of Alternative-Specific Constants," Tinbergen Institute Discussion Papers 17-068/VIII, Tinbergen Institute, revised 29 Jan 2018.

    More about this item

    Keywords

    Mixture distributions; Mixed logit; Simulation; Maximum simulated likelihood;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:120:y:2013:i:2:p:206-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.