IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v108y2010i2p184-186.html
   My bibliography  Save this article

How much stock return predictability can we expect from an asset pricing model?

Author

Listed:
  • Zhou, Guofu

Abstract

We provide a new upper bound on the R-squared of a predictive regression of stock returns on predictable variables, tightening substantially Ross's (2005) bound. An empirical application illustrates that while Ross's bound is not binding, our bound does.

Suggested Citation

  • Zhou, Guofu, 2010. "How much stock return predictability can we expect from an asset pricing model?," Economics Letters, Elsevier, vol. 108(2), pages 184-186, August.
  • Handle: RePEc:eee:ecolet:v:108:y:2010:i:2:p:184-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(10)00183-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    2. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 54(4), pages 1325-1360, August.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    5. Tu, Jun & Zhou, Guofu, 2004. "Data-generating process uncertainty: What difference does it make in portfolio decisions?," Journal of Financial Economics, Elsevier, vol. 72(2), pages 385-421, May.
    6. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    7. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    8. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    9. Kirby, Chris, 1998. "The Restrictions on Predictability Implied by Rational Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 11(2), pages 343-382.
    10. Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
    11. Lubos Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    12. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    13. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    14. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecolet:v:162:y:2018:i:c:p:140-145 is not listed on IDEAS
    2. Hai Lin & Daniel Quill & Henk Berkman, 2016. "Information diffusion and the predictability of New Zealand stock market returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 56(3), pages 749-785, September.
    3. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    4. repec:eee:reveco:v:51:y:2017:i:c:p:621-644 is not listed on IDEAS
    5. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    7. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    8. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, Elsevier.
    9. Cunha, Ronan & Pereira, Pedro L. Valls, 2015. "Automatic model selection for forecasting Brazilian stock returns," Textos para discussão 398, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    10. Tom Engsted & Stig V. Møller & Magnus Sander, 2013. "Bond return predictability in expansions and recessions," CREATES Research Papers 2013-13, Department of Economics and Business Economics, Aarhus University.
    11. Fletcher, Jonathan & Basu, Devraj, 2016. "An examination of the benefits of dynamic trading strategies in U.K. closed-end funds," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 109-118.
    12. Buncic, Daniel & Tischhauser, Martin, 2017. "Macroeconomic factors and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:108:y:2010:i:2:p:184-186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.