IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v146y2025ics0264999325000173.html
   My bibliography  Save this article

Penalized quadratic inference functions estimation of fixed effects partially linear varying coefficient spatial error model

Author

Listed:
  • Chen, Jianbao
  • Li, Fen

Abstract

This study introduces a novel fixed effects partially linear varying coefficient spatial error model featuring a correlation structure within individuals. A penalized quadratic inference functions estimation method for unknowns is proposed by employing B-spline to approximate the varying coefficient functions. Under certain regular conditions, the consistency and asymptotic normality of parametric estimators and the optimal convergence rate of nonparametric estimators are derived. Monte Carlo simulation indicates that the estimates perform strongly in finite sample scenarios. Empirical data analysis demonstrates that the model effectively captures the spatial error correlation of CO2 emissions and diverse factors’ linear and nonlinear influences on CO2 emissions. The proposed model and estimation method can be useful for researchers in related disciplines.

Suggested Citation

  • Chen, Jianbao & Li, Fen, 2025. "Penalized quadratic inference functions estimation of fixed effects partially linear varying coefficient spatial error model," Economic Modelling, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:ecmode:v:146:y:2025:i:c:s0264999325000173
    DOI: 10.1016/j.econmod.2025.107022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999325000173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2025.107022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guoliang Fan & Anni Zhu & Hongxia Xu, 2023. "Analysis of the Impact of Industrial Structure Upgrading and Energy Structure Optimization on Carbon Emission Reduction," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    2. Sun, Yanqing & Zhang, Yuanqing & Huang, Jianhua Z., 2019. "Estimation of a semiparametric varying-coefficient mixed regressive spatial autoregressive model," Econometrics and Statistics, Elsevier, vol. 9(C), pages 140-155.
    3. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    4. Kuan-Pin Lin & Zhi-He Long & Mei Wu, 2006. "A Spatial Investigation of σ-Convergence in China," Hi-Stat Discussion Paper Series d05-155, Institute of Economic Research, Hitotsubashi University.
    5. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    6. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    7. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    8. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    9. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    10. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    11. Yoshiro Higano, 2004. "The Spatial Economy: Cities, Regions, and International Trade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 283-285.
    12. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    13. Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
    14. Yan Fan & Manlai Tang & Maozai Tian, 2016. "Composite quantile regression for varying-coefficient single-index models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(10), pages 3027-3047, May.
    15. Guangxiong Mao & Wei Jin & Ying Zhu & Yanjun Mao & Wei-Ling Hsu & Hsin-Lung Liu, 2021. "Environmental Pollution Effects of Regional Industrial Transfer Illustrated with Jiangsu, China," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    16. Zhu, Bing & Hu, Simon & Chen, Xiqun (Michael) & Roncoli, Claudio & Lee, Der-Horng, 2024. "Uncovering driving factors and spatiotemporal patterns of urban passenger car CO2 emissions: A case study in Hangzhou, China," Applied Energy, Elsevier, vol. 375(C).
    17. Laixiang Sun & Eunsuk Hong & Tao Li, 2010. "Incorporating Technology Diffusion, Factor Mobility And Structural Change Into Cross‐Region Growth Regression: An Application To China," Journal of Regional Science, Wiley Blackwell, vol. 50(3), pages 734-755, August.
    18. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    19. Hongjie Wei & Yan Sun, 2017. "Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(1), pages 113-128, January.
    20. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    21. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    22. Zhang, Lin, 2017. "The knowledge spillover effects of FDI on the productivity and efficiency of research activities in China," China Economic Review, Elsevier, vol. 42(C), pages 1-14.
    23. Hubert Jayet & Julie Le Gallo & Luc Anselin, 2008. "Spatial Econometrics and Panel Data Models," Post-Print hal-02389412, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    2. Fang Lu & Guoliang Tian & Jing Yang, 2024. "GMM estimation and variable selection of partially linear additive spatial autoregressive model," Statistical Papers, Springer, vol. 65(4), pages 2253-2288, June.
    3. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    4. Lu, Fang & Pan, Hao & Yang, Jing, 2025. "GMM estimation and variable selection of semiparametric model with increasing dimension and high-order spatial dependence," Computational Statistics & Data Analysis, Elsevier, vol. 205(C).
    5. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    6. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    7. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    8. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    9. Xuan Chen & Yunquan Song, 2025. "Transfer learning for semiparametric varying coefficient spatial autoregressive models," Statistical Papers, Springer, vol. 66(2), pages 1-22, February.
    10. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    11. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.
    12. Liu, Yu & Zhuang, Xiaoyang, 2023. "Shrinkage estimation of semi-parametric spatial autoregressive panel data model with fixed effects," Statistics & Probability Letters, Elsevier, vol. 194(C).
    13. Zhongzhe Ouyang & Lu Wang & Alzheimer’s Disease Neuroimaging Initiative, 2024. "Imputation-Based Variable Selection Method for Block-Wise Missing Data When Integrating Multiple Longitudinal Studies," Mathematics, MDPI, vol. 12(7), pages 1-14, March.
    14. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    15. Mu Yue & Jingxin Xi, 2025. "Sparse Boosting for Additive Spatial Autoregressive Model with High Dimensionality," Mathematics, MDPI, vol. 13(5), pages 1-16, February.
    16. Yunquan Song & Hang Su & Minmin Zhan, 2024. "Local Walsh-average-based Estimation and Variable Selection for Spatial Single-index Autoregressive Models," Networks and Spatial Economics, Springer, vol. 24(2), pages 313-339, June.
    17. Zheng, Xueying & Xue, Lan & Qu, Annie, 2018. "Time-varying correlation structure estimation and local-feature detection for spatio-temporal data," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 221-239.
    18. Gaivoronskaia, Elizaveta, 2020. "Electricity demand elasticity and regional effects: Spatial econometric approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 76-95.
    19. Jingyi Zhang & Honglang Wang & Yuehua Cui, 2025. "Generalized functional varying-index coefficient model for dynamic synergistic gene-environment interactions with binary longitudinal traits," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-17, January.
    20. Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    More about this item

    Keywords

    Partially linear varying coefficient spatial error model; Penalized quadratic inference functions estimation; Correlation within individuals; Asymptotic property; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:146:y:2025:i:c:s0264999325000173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.