IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0318103.html
   My bibliography  Save this article

Generalized functional varying-index coefficient model for dynamic synergistic gene-environment interactions with binary longitudinal traits

Author

Listed:
  • Jingyi Zhang
  • Honglang Wang
  • Yuehua Cui

Abstract

The genetic basis of complex traits involves the function of many genes with small effects as well as complex gene-gene and gene-environment interactions. As one of the major players in complex diseases, the role of gene-environment interactions has been increasingly recognized. Motivated by epidemiology studies to evaluate the joint effect of environmental mixtures, we developed a functional varying-index coefficient model (FVICM) to assess the combined effect of environmental mixtures and their interactions with genes, under a longitudinal design with quantitative traits. Built upon the previous work, we extend the FVICM model to accommodate binary longitudinal traits through the development of a generalized functional varying-index coefficient model (gFVICM). This model examines how the genetic effects on a disease trait are nonlinearly influenced by a combination of environmental factors. We derive an estimation procedure for the varying-index coefficient functions using quadratic inference functions combined with penalized splines. A hypothesis testing procedure is proposed to evaluate the significance of the nonparametric index functions. Extensive Monte Carlo simulations are conducted to evaluate the performance of the method under finite samples. The utility of the method is further demonstrated through a case study with a pain sensitivity dataset. SNPs were found to have their effects on blood pressure nonlinearly influenced by a combination of environmental factors.

Suggested Citation

  • Jingyi Zhang & Honglang Wang & Yuehua Cui, 2025. "Generalized functional varying-index coefficient model for dynamic synergistic gene-environment interactions with binary longitudinal traits," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0318103
    DOI: 10.1371/journal.pone.0318103
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318103
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0318103&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0318103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Zhiyuan Xu & Xiaotong Shen & Wei Pan & for the Alzheimer's Disease Neuroimaging Initiative, 2014. "Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis in Detecting Genetic Association with Neuroimaging Phenotypes," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    3. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    4. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    5. Paul Zimmet & K. G. M. M. Alberti & Jonathan Shaw, 2001. "Global and societal implications of the diabetes epidemic," Nature, Nature, vol. 414(6865), pages 782-787, December.
    6. Lan Wang & Annie Qu, 2009. "Consistent model selection and data‐driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190, January.
    7. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    8. Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.
    2. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    3. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    4. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    5. Samuel Muller & Suojin Wang & A. H. Welsh, 2024. "The effect of the working correlation on fitting models to longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 891-912, June.
    6. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    7. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    8. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    9. Denis Heng-Yan Leung & Dylan S. Small & Jing Qin & Min Zhu, 2013. "Shrinkage Empirical Likelihood Estimator in Longitudinal Analysis with Time-Dependent Covariates—Application to Modeling the Health of Filipino Children," Biometrics, The International Biometric Society, vol. 69(3), pages 624-632, September.
    10. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    11. Guha Niyogi, Pratim & Zhong, Ping-Shou, 2025. "Quadratic inference with dense functional responses," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
    12. Chen, Jianbao & Li, Fen, 2025. "Penalized quadratic inference functions estimation of fixed effects partially linear varying coefficient spatial error model," Economic Modelling, Elsevier, vol. 146(C).
    13. Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
    14. Hu Yang & Chaohui Guo & Jing Lv, 2016. "Variable selection for generalized varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 57(1), pages 115-132, March.
    15. Chaohui Guo & Hu Yang & Jing Lv, 2018. "Two step estimations for a single-index varying-coefficient model with longitudinal data," Statistical Papers, Springer, vol. 59(3), pages 957-983, September.
    16. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    17. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    18. Frederico Belo & Chen Xue & Lu Zhang, 2010. "Cross-sectional Tobin's Q," NBER Working Papers 16336, National Bureau of Economic Research, Inc.
    19. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    20. Alfonso Mendoza-Velázquez & Luis Carlos Ortuño-Barba & Luis David Conde-Cortés, 2022. "Corporate governance and firm performance in hybrid model countries," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 21(1), pages 32-58, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.