IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v207y2025ics0047259x24001076.html
   My bibliography  Save this article

Quadratic inference with dense functional responses

Author

Listed:
  • Guha Niyogi, Pratim
  • Zhong, Ping-Shou

Abstract

We address the challenge of estimation in the context of constant linear effect models with dense functional responses. In this framework, the conditional expectation of the response curve is represented by a linear combination of functional covariates with constant regression parameters. In this paper, we present an alternative solution by employing the quadratic inference approach, a well-established method for analyzing correlated data, to estimate the regression coefficients. Our approach leverages non-parametrically estimated basis functions, eliminating the need for choosing working correlation structures. Furthermore, we demonstrate that our method achieves a parametric n-convergence rate, contingent on an appropriate choice of bandwidth. This convergence is observed when the number of repeated measurements per trajectory exceeds a certain threshold, specifically, when it surpasses na0, with n representing the number of trajectories. Additionally, we establish the asymptotic normality of the resulting estimator. The performance of the proposed method is compared with that of existing methods through extensive simulation studies, where our proposed method outperforms. Real data analysis is also conducted to demonstrate the proposed method.

Suggested Citation

  • Guha Niyogi, Pratim & Zhong, Ping-Shou, 2025. "Quadratic inference with dense functional responses," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x24001076
    DOI: 10.1016/j.jmva.2024.105400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. repec:aph:ajpbhl:10.2105/ajph.2017.303707_9 is not listed on IDEAS
    3. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Haozhe Zhang & Yehua Li, 2022. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1523-1537, October.
    5. repec:aph:ajpbhl:10.2105/ajph.2017.303706_3 is not listed on IDEAS
    6. Jianhui Zhou & Annie Qu, 2012. "Informative Estimation and Selection of Correlation Structure for Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 701-710, June.
    7. Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
    8. Yang Bai & Zhongyi Zhu & Wing K. Fung, 2008. "Partial Linear Models for Longitudinal Data Based on Quadratic Inference Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 104-118, March.
    9. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    10. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    11. Turner, E.L. & Prague, M. & Gallis, J.A. & Li, F. & Murray, D.M., 2017. "Review of recent methodological developments in group-randomized trials: Part 2-analysis," American Journal of Public Health, American Public Health Association, vol. 107(7), pages 1078-1086.
    12. Jeng‐Min Chiou & Hans‐Georg Müller & Jane‐Ling Wang, 2003. "Functional quasi‐likelihood regression models with smooth random effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 405-423, May.
    13. Turner, E.L. & Li, F. & Gallis, J.A. & Prague, M. & Murray, D.M., 2017. "Review of recent methodological developments in group-randomized trials: Part 1 - Design," American Journal of Public Health, American Public Health Association, vol. 107(6), pages 907-915.
    14. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    15. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    16. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    3. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    4. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    5. Kokoszka, Piotr & Reimherr, Matthew, 2013. "Asymptotic normality of the principal components of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1546-1562.
    6. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    7. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    8. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    9. Cai, Leheng & Hu, Qirui, 2024. "Simultaneous inference and uniform test for eigensystems of functional data," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    10. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.
    11. Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
    12. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    13. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    14. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    15. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    16. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    17. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    19. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    20. Samuel Muller & Suojin Wang & A. H. Welsh, 2024. "The effect of the working correlation on fitting models to longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 891-912, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x24001076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.