IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2232-2245.html
   My bibliography  Save this article

Functional data analysis with covariate‐dependent mean and covariance structures

Author

Listed:
  • Chenlin Zhang
  • Huazhen Lin
  • Li Liu
  • Jin Liu
  • Yi Li

Abstract

Functional data analysis has emerged as a powerful tool in response to the ever‐increasing resources and efforts devoted to collecting information about response curves or anything that varies over a continuum. However, limited progress has been made with regard to linking the covariance structures of response curves to external covariates, as most functional models assume a common covariance structure. We propose a new functional regression model with covariate‐dependent mean and covariance structures. Particularly, by allowing variances of random scores to be covariate‐dependent, we identify eigenfunctions for each individual from the set of eigenfunctions that govern the variation patterns across all individuals, resulting in high interpretability and prediction power. We further propose a new penalized quasi‐likelihood procedure that combines regularization and B‐spline smoothing for model selection and estimation and establish the convergence rate and asymptotic normality of the proposed estimators. The utility of the developed method is demonstrated via simulations, as well as an analysis of the Avon Longitudinal Study of Parents and Children concerning parental effects on the growth curves of their offspring, which yields biologically interesting results.

Suggested Citation

  • Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2232-2245
    DOI: 10.1111/biom.13744
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13744
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kani Chen & Xingwei Tong, 2010. "Varying coefficient transformation models with censored data," Biometrika, Biometrika Trust, vol. 97(4), pages 969-976.
    2. Daniel Backenroth & Jeff Goldsmith & Michelle D. Harran & Juan C. Cortes & John W. Krakauer & Tomoko Kitago, 2018. "Modeling Motor Learning Using Heteroscedastic Functional Principal Components Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1003-1015, July.
    3. Li, Yehua & Wang, Naisyin & Carroll, Raymond J., 2010. "Generalized Functional Linear Models With Semiparametric Single-Index Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 621-633.
    4. Degui Li & Jia Chen & Jiti Gao, 2011. "Non‐parametric time‐varying coefficient panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 387-408, October.
    5. Fang Yao & Hans-Georg Müller, 2010. "Functional quadratic regression," Biometrika, Biometrika Trust, vol. 97(1), pages 49-64.
    6. Ling Zhou & Huazhen Lin & Hua Liang, 2018. "Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1550-1564, October.
    7. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    8. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    9. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    2. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    3. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    4. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    5. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    6. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    7. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    9. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
    10. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    11. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    13. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    14. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    15. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    16. Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    17. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    18. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    19. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    20. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2232-2245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.