IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v205y2025ics016794732400197x.html
   My bibliography  Save this article

GMM estimation and variable selection of semiparametric model with increasing dimension and high-order spatial dependence

Author

Listed:
  • Lu, Fang
  • Pan, Hao
  • Yang, Jing

Abstract

To address various forms of spatial dependence and the heterogeneous effects of the impacts of some regressors, this paper concentrates on the generalized method of moments (GMM) estimation and variable selection of higher-order spatial autoregressive (SAR) model with semi-varying coefficients and diverging number of parameters. With the varying coefficient functions being approximated by basis functions, the GMM estimation procedure is firstly proposed and then, a novel and convenient smooth-threshold GMM procedure is constructed for variable selection based on the smooth-threshold estimating equations. Under some regularity conditions, the asymptotic properties of the proposed estimation and variable selection methods are established. In particular, the asymptotic normality of the parametric estimator is derived via a novel way based on some fundamental operations on block matrix. Compared to the existing estimation methods of semiparametric SAR models, our proposed series-based GMM procedure can simultaneously enjoy the merits of lower computing cost, higher estimation accuracy or higher applicability, especially in the case of heteroscedasticity. Extensive numerical simulations are conducted to confirm the theories and to demonstrate the advantages of the proposed method, in finite sample performance. Two real data analysis are further followed for application.

Suggested Citation

  • Lu, Fang & Pan, Hao & Yang, Jing, 2025. "GMM estimation and variable selection of semiparametric model with increasing dimension and high-order spatial dependence," Computational Statistics & Data Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:csdana:v:205:y:2025:i:c:s016794732400197x
    DOI: 10.1016/j.csda.2024.108113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732400197X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Chunrong Ai & Yuanqing Zhang, 2017. "Estimation of partially specified spatial panel data models with fixed-effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 6-22, March.
    4. Fang Lu & Sisheng Liu & Jing Yang & Xuewen Lu, 2023. "Automatic variable selection for semiparametric spatial autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 42(8), pages 655-675, September.
    5. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    6. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    7. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    8. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    9. Xiaoyi Han & Lung-Fei Lee, 2016. "Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 642-660, October.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    11. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    12. Cheng, Suli & Chen, Jianbao, 2023. "GMM estimation of partially linear additive spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    13. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
    14. Tadao Hoshino, 2018. "Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 160-172, January.
    15. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    16. Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
    17. Suli Cheng & Jianbao Chen, 2021. "Estimation of partially linear single-index spatial autoregressive model," Statistical Papers, Springer, vol. 62(1), pages 495-531, February.
    18. Robinson, Peter, 2008. "Correlation testing in time series, spatial and cross-sectional data," LSE Research Online Documents on Economics 25470, London School of Economics and Political Science, LSE Library.
    19. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    20. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    21. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    22. Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    23. Yong Bao, 2023. "Indirect inference estimation of higher-order spatial autoregressive models," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 247-280, February.
    24. Tizheng Li & Yuping Wang, 2024. "Higher-order spatial autoregressive varying coefficient model: estimation and specification test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1258-1299, December.
    25. Su, Liangjun & Jin, Sainan, 2010. "Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 157(1), pages 18-33, July.
    26. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    27. Lin, Xu & Weinberg, Bruce A., 2014. "Unrequited friendship? How reciprocity mediates adolescent peer effects," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 144-153.
    28. Sun, Yanqing & Zhang, Yuanqing & Huang, Jianhua Z., 2019. "Estimation of a semiparametric varying-coefficient mixed regressive spatial autoregressive model," Econometrics and Statistics, Elsevier, vol. 9(C), pages 140-155.
    29. Yueqin Wu & Yan Sun, 2017. "Shrinkage estimation of the linear model with spatial interaction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 51-68, January.
    30. Qu, Xi & Lee, Lung-fei, 2015. "Estimating a spatial autoregressive model with an endogenous spatial weight matrix," Journal of Econometrics, Elsevier, vol. 184(2), pages 209-232.
    31. Pal, Amresh Bahadur & Dubey, Ashutosh Kumar & Chaturvedi, Anoop, 2016. "Shrinkage estimation in spatial autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 362-373.
    32. Han, Xiaoyi & Hsieh, Chih-Sheng & Lee, Lung-fei, 2017. "Estimation and model selection of higher-order spatial autoregressive model: An efficient Bayesian approach," Regional Science and Urban Economics, Elsevier, vol. 63(C), pages 97-120.
    33. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    34. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    35. Robinson, P.M., 2008. "Correlation testing in time series, spatial and cross-sectional data," Journal of Econometrics, Elsevier, vol. 147(1), pages 5-16, November.
    36. Fei Jin & Yuqin Wang, 2022. "GMM estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors," Econometric Reviews, Taylor & Francis Journals, vol. 41(6), pages 652-674, July.
    37. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    38. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    39. Hongjie Wei & Yan Sun & Meidi Hu, 2018. "Model Selection in Spatial Autoregressive Models with Varying Coefficients," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 13(4), pages 559-576, December.
    40. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    41. Sun, Yan, 2017. "Estimation of single-index model with spatial interaction," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 36-45.
    42. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & Guoliang Tian & Jing Yang, 2024. "GMM estimation and variable selection of partially linear additive spatial autoregressive model," Statistical Papers, Springer, vol. 65(4), pages 2253-2288, June.
    2. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    3. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    4. Tizheng Li & Lin Li & Yanhui Li, 2025. "Semiparametric partially linear varying coefficient higher-order spatial autoregressive model," Statistical Papers, Springer, vol. 66(3), pages 1-43, April.
    5. Jing Yang & Yujiang Xiao & Fang Lu, 2025. "Model detection and variable selection for semiparametric additive spatial autoregressive model," Statistical Papers, Springer, vol. 66(4), pages 1-29, June.
    6. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    7. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    8. Ruiqin Tian & Miaojie Xia & Dengke Xu, 2024. "Profile quasi-maximum likelihood estimation for semiparametric varying-coefficient spatial autoregressive panel models with fixed effects," Statistical Papers, Springer, vol. 65(8), pages 5109-5143, October.
    9. Yangbing Tang & Zhongzhan Zhang & Jiang Du, 2024. "Rank-based instrumental variable estimation for semiparametric varying coefficient spatial autoregressive models," Statistical Papers, Springer, vol. 65(3), pages 1805-1839, May.
    10. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    11. Zhengyu Zhang, 2013. "A Pairwise Difference Estimator for Partially Linear Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(2), pages 176-194, June.
    12. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    13. repec:esx:essedp:772 is not listed on IDEAS
    14. Tizheng Li & Yuping Wang & Ke Fang, 2024. "A semiparametric dynamic higher-order spatial autoregressive model," Statistical Papers, Springer, vol. 65(2), pages 1085-1123, April.
    15. Tizheng Li & Yuping Wang, 2024. "Higher-order spatial autoregressive varying coefficient model: estimation and specification test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1258-1299, December.
    16. Xuan Liang & Jiti Gao & Xiaodong Gong, 2019. "Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects," Monash Econometrics and Business Statistics Working Papers 26/19, Monash University, Department of Econometrics and Business Statistics.
    17. Fei Jin & Lung‐fei Lee & Kai Yang, 2024. "Best linear and quadratic moments for spatial econometric models with an application to spatial interdependence patterns of employment growth in US counties," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 640-658, June.
    18. Wang, Wei & Lee, Lung-Fei & Bao, Yan, 2018. "GMM estimation of the spatial autoregressive model in a system of interrelated networks," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 167-198.
    19. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    20. Hong, Han & Ju, Gaosheng & Li, Qi & Yan, Karen X., 2024. "Varying-coefficient spatial dynamic panel data models with fixed effects: Theory and application," Journal of Econometrics, Elsevier, vol. 245(1).
    21. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:205:y:2025:i:c:s016794732400197x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.