IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp84-97.html
   My bibliography  Save this article

A Bayesian mixture of lasso regressions with t-errors

Author

Listed:
  • Cozzini, Alberto
  • Jasra, Ajay
  • Montana, Giovanni
  • Persing, Adam

Abstract

The following article considers a mixture of regressions with variable selection problem. In many real-data scenarios, one is faced with data which possess outliers, skewness and, simultaneously, one would like to be able to construct clusters with specific predictors that are fairly sparse. A Bayesian mixture of lasso regressions with t-errors to reflect these specific demands is developed. The resulting model is necessarily complex and to fit the model to real data, a state-of-the-art Particle Markov chain Monte Carlo (PMCMC) algorithm based upon sequential Monte Carlo (SMC) methods is developed. The model and algorithm are investigated on both simulated and real data.

Suggested Citation

  • Cozzini, Alberto & Jasra, Ajay & Montana, Giovanni & Persing, Adam, 2014. "A Bayesian mixture of lasso regressions with t-errors," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 84-97.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:84-97
    DOI: 10.1016/j.csda.2014.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000954
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    3. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    4. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    5. Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
    6. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    7. Sinae Kim & Mahlet G. Tadesse & Marina Vannucci, 2006. "Variable selection in clustering via Dirichlet process mixture models," Biometrika, Biometrika Trust, vol. 93(4), pages 877-893, December.
    8. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    9. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    10. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:84-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.