IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp219-226.html

Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases

Author

Listed:
  • Franklin, Jessica M.
  • Schneeweiss, Sebastian
  • Polinski, Jennifer M.
  • Rassen, Jeremy A.

Abstract

Longitudinal healthcare claim databases are frequently used for studying the comparative safety and effectiveness of medications, but results from these studies may be biased due to residual confounding. It is unclear whether methods for confounding adjustment that have been shown to perform well in small, simple nonrandomized studies are applicable to the large, complex pharmacoepidemiologic studies created from secondary healthcare data. Ordinary simulation approaches for evaluating the performance of statistical methods do not capture important features of healthcare claims. A statistical framework for creating replicated simulation datasets from an empirical cohort study in electronic healthcare claims data is developed and validated. The approach relies on resampling from the observed covariate and exposure data without modification in all simulated datasets to preserve the associations among these variables. Repeated outcomes are simulated using a true treatment effect of the investigator’s choice and the baseline hazard function estimated from the empirical data. As an example, this framework is applied to a study of high versus low-intensity statin use and cardiovascular outcomes. Simulated data is based on real data drawn from Medicare Parts A and B linked with a prescription drug insurance claims database maintained by Caremark. Properties of the data simulated using this framework are compared with the empirical data on which the simulations were based. In addition, the simulated datasets are used to compare variable selection strategies for confounder adjustment via the propensity score, including high-dimensional approaches that could not be evaluated with ordinary simulation methods. The simulated datasets are found to closely resemble the observed complex data structure but have the advantage of an investigator-specified exposure effect.

Suggested Citation

  • Franklin, Jessica M. & Schneeweiss, Sebastian & Polinski, Jennifer M. & Rassen, Jeremy A., 2014. "Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 219-226.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:219-226
    DOI: 10.1016/j.csda.2013.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003721
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Vaughan, Laura K. & Divers, Jasmin & Padilla, Miguel A. & Redden, David T. & Tiwari, Hemant K. & Pomp, Daniel & Allison, David B., 2009. "The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1755-1766, March.
    2. Gary L Gadbury & Qinfang Xiang & Lin Yang & Stephen Barnes & Grier P Page & David B Allison, 2008. "Evaluating Statistical Methods Using Plasmode Data Sets in the Age of Massive Public Databases: An Illustration Using False Discovery Rates," PLOS Genetics, Public Library of Science, vol. 4(6), pages 1-8, June.
    3. Mai A Elobeid & Miguel A Padilla & Theresa McVie & Olivia Thomas & David W Brock & Bret Musser & Kaifeng Lu & Christopher S Coffey & Renee A Desmond & Marie-Pierre St-Onge & Kishore M Gadde & Steven B, 2009. "Missing Data in Randomized Clinical Trials for Weight Loss: Scope of the Problem, State of the Field, and Performance of Statistical Methods," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-11, August.
    4. Fatih Safa Erenay & Oguzhan Alagoz & Ritesh Banerjee & Robert R. Cima, 2011. "Estimating the Unknown Parameters of the Natural History of Metachronous Colorectal Cancer Using Discrete-Event Simulation," Medical Decision Making, , vol. 31(4), pages 611-624, July.
    5. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanessa Ress & Eva‐Maria Wild, 2024. "Comparing methods for estimating causal treatment effects of administrative health data: A plasmode simulation study," Health Economics, John Wiley & Sons, Ltd., vol. 33(12), pages 2757-2777, December.
    2. Pang Menglan & Schuster Tibor & Filion Kristian B. & Schnitzer Mireille E. & Eberg Maria & Platt Robert W., 2016. "Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data – A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weigh," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-12, November.
    3. Mingyang Shan & Douglas Faries & Andy Dang & Xiang Zhang & Zhanglin Cui & Kristin M. Sheffield, 2022. "A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 259-284, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Chang, Yuan-Chin & Huang, Yufen & Huang, Yu-Pai, 2010. "Early stopping in L2Boosting," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2203-2213, October.
    2. Germán Ibacache-Pulgar & Gilberto Paula & Francisco Cysneiros, 2013. "Semiparametric additive models under symmetric distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 103-121, March.
    3. Zhongnan Jin & Jie Min & Yili Hong & Pang Du & Qingyu Yang, 2024. "Multivariate Functional Clustering with Variable Selection and Application to Sensor Data from Engineering Systems," INFORMS Joural on Data Science, INFORMS, vol. 3(2), pages 203-218, October.
    4. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    5. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    6. Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
    7. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    8. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    9. Naraidoo, Ruthira & Paya, Ivan, 2012. "Forecasting monetary policy rules in South Africa," International Journal of Forecasting, Elsevier, vol. 28(2), pages 446-455.
    10. repec:cgr:cgsser:02-06 is not listed on IDEAS
    11. Jeff Racine, 2006. "gnuplot 4.0: a portable interactive plotting utility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 133-141.
    12. Rüdiger Krause & Gerhard Tutz, 2006. "Genetic algorithms for the selection of smoothing parameters in additive models," Computational Statistics, Springer, vol. 21(1), pages 9-31, March.
    13. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    14. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    15. Juan Manuel Julio & Norberto Rodr�guez & H�ctor Manuel Z�rate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    16. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    17. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.
    18. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    19. Rettore, Enrico & Paggiaro, Adriano & Trivellato, Ugo, 2008. "The Effect of Extending the Duration of Eligibility in an Italian Labour Market Programme for Dismissed Workers," IZA Discussion Papers 3633, Institute of Labor Economics (IZA).
    20. Tutz, Gerhard & Leitenstorfer, Florian, 2006. "Response shrinkage estimators in binary regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2878-2901, June.
    21. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:219-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.