IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp868-886.html
   My bibliography  Save this article

Stochastic dominance with imprecise information

Author

Listed:
  • Montes, Ignacio
  • Miranda, Enrique
  • Montes, Susana

Abstract

Stochastic dominance, which is based on the comparison of distribution functions, is one of the most popular preference measures. However, its use is limited to the case where the goal is to compare pairs of distribution functions, whereas in many cases it is interesting to compare sets of distribution functions: this may be the case for instance when the available information does not allow to fully elicitate the probability distributions of the random variables. To deal with these situations, a number of generalisations of the notion of stochastic dominance are proposed; their connection with an equivalent p-box representation of the sets of distribution functions is studied; a number of particular cases, such as sets of distributions associated to possibility measures, are investigated; and an application to the comparison of the Lorenz curves of countries within the same region is presented.

Suggested Citation

  • Montes, Ignacio & Miranda, Enrique & Montes, Susana, 2014. "Stochastic dominance with imprecise information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 868-886.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:868-886
    DOI: 10.1016/j.csda.2012.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003192
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    2. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    3. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    4. Atkinson, A B, 1987. "On the Measurement of Poverty," Econometrica, Econometric Society, vol. 55(4), pages 749-764, July.
    5. Antoine, V. & Quost, B. & Masson, M.-H. & Denœux, T., 2012. "CECM: Constrained evidential C-means algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 894-914.
    6. Islam, Mursaleena & Braden, John B., 2006. "Bio-economic development of floodplains: farming versus fishing in Bangladesh," Environment and Development Economics, Cambridge University Press, vol. 11(1), pages 95-126, February.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    9. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    10. repec:eee:reensy:v:91:y:2006:i:10:p:1435-1442 is not listed on IDEAS
    11. Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ejores:v:271:y:2018:i:2:p:632-643 is not listed on IDEAS
    2. Černý, Michal & Hladík, Milan, 2014. "The complexity of computation and approximation of the t-ratio over one-dimensional interval data," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 26-43.
    3. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, Open Access Journal, vol. 9(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:868-886. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.