IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i3p1319-1330.html
   My bibliography  Save this article

Generalized spatial dynamic factor models

Author

Listed:
  • Lopes, Hedibert Freitas
  • Gamerman, Dani
  • Salazar, Esther

Abstract

This paper introduces a new class of spatio-temporal models for measurements belonging to the exponential family of distributions. In this new class, the spatial and temporal components are conditionally independently modeled via a latent factor analysis structure for the (canonical) transformation of the measurements mean function. The factor loadings matrix is responsible for modeling spatial variation, while the common factors are responsible for modeling the temporal variation. One of the main advantages of our model with spatially structured loadings is the possibility of detecting similar regions associated to distinct dynamic factors. We also show that the new class outperforms a large class of spatial-temporal models that are commonly used in the literature. Posterior inference for fixed parameters and dynamic latent factors is performed via a custom tailored Markov chain Monte Carlo scheme for multivariate dynamic systems that combines extended Kalman filter-based Metropolis-Hastings proposal densities with block-sampling schemes. Factor model uncertainty is also fully addressed by a reversible jump Markov chain Monte Carlo algorithm designed to learn about the number of common factors. Three applications, two based on synthetic Gamma and Bernoulli data and one based on real Bernoulli data, are presented in order to illustrate the flexibility and generality of the new class of models, as well as to discuss features of the proposed MCMC algorithm.

Suggested Citation

  • Lopes, Hedibert Freitas & Gamerman, Dani & Salazar, Esther, 2011. "Generalized spatial dynamic factor models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1319-1330, March.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1319-1330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00363-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    2. Leonhard Knorr‐Held & Nicola G. Best, 2001. "A shared component model for detecting joint and selective clustering of two diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 73-85.
    3. J. P. Hughes & P Guttorp & S. P. Charles, 1999. "A non‐homogeneous hidden Markov model for precipitation occurrence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 15-30.
    4. Leonhard Knorr‐Held, 1999. "Conditional Prior Proposals in Dynamic Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 129-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius Diniz Mayrink & Renato Valladares Panaro & Marcelo Azevedo Costa, 2021. "Structural equation modeling with time dependence: an application comparing Brazilian energy distributors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 353-383, June.
    2. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    3. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    4. Di Caro, Paolo, 2014. "Regional recessions and recoveries in theory and practice: a resilience-based overview," MPRA Paper 60300, University Library of Munich, Germany.
    5. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    6. Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
    7. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    2. Cindy Xin Feng, 2015. "Bayesian joint modeling of correlated counts data with application to adverse birth outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1206-1222, June.
    3. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    4. MacNab, Ying C. & Lin, Yi, 2009. "On empirical Bayes penalized quasi-likelihood inference in GLMMs and in Bayesian disease mapping and ecological modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2950-2967, June.
    5. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    7. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    8. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    9. Powers, Stephanie & Gerlach, Richard & Stamey, James, 2010. "Bayesian variable selection for Poisson regression with underreported responses," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3289-3299, December.
    10. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    11. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    12. Hie Joo Ahn & Bart Hobijn & Ayşegül Şahin, 2023. "The Dual U.S. Labor Market Uncovered," NBER Working Papers 31241, National Bureau of Economic Research, Inc.
    13. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    14. Pierre Ailliot & Craig Thompson & Peter Thomson, 2009. "Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 405-426, July.
    15. Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres-Prieto, 2017. "Bayesian dynamic modeling of time series of dengue disease case counts," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
    16. Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
    17. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    18. Enrique Gracia & Antonio López-Quílez & Miriam Marco & Marisol Lila, 2018. "Neighborhood characteristics and violence behind closed doors: The spatial overlap of child maltreatment and intimate partner violence," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    19. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    20. Jane Law & Christopher Perlman, 2018. "Exploring Geographic Variation of Mental Health Risk and Service Utilization of Doctors and Hospitals in Toronto: A Shared Component Spatial Modeling Approach," IJERPH, MDPI, vol. 15(4), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1319-1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.