IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i2p585-597.html

Semi-parametric marginal models for hierarchical data and their corresponding full models

Author

Listed:
  • Molenberghs, Geert
  • Kenward, Michael G.

Abstract

Semi-parametrically specified models for multivariate, longitudinal, clustered, multi-level, and other hierarchical data, particularly for non-Gaussian outcomes, are ubiquitous because their parameters can most often be conveniently estimated using the important class of generalized estimating equations (GEE). The focus here is on marginal models, to be understood as models that condition neither on random effects nor on other outcomes, but merely on fixed covariates. In spite of their well-deserved popularity, concern could be raised as to whether such models can always be viewed as a partially specified version of a model with full distributional assumptions, or rather whether such a parent simply does not exist. It is shown, through the use of the hybrid marginal-conditional models, that the answer is affirmative. For conventional GEE with a working correlation structure, the Bahadur model is sometimes considered to be the natural parent candidate, but we show that this is a misconception. The result presented here, which is conceptual in nature, is valid whenever the exponential family is used for the semi-parametric specification, or when a straightforward transformation to an exponential family member is possible, implying validity for broad classes of binary, ordinal, nominal, and count data. The result is illustrated in the context of trivariate binary data. Further, as an illustration, many of the models considered are applied to data from a developmental toxicity study.

Suggested Citation

  • Molenberghs, Geert & Kenward, Michael G., 2010. "Semi-parametric marginal models for hierarchical data and their corresponding full models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 585-597, February.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:585-597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00370-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Patrick J. Heagerty, 2002. "Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data," Biometrics, The International Biometric Society, vol. 58(2), pages 342-351, June.
    2. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. R. C. Oliveira & G. Molenberghs & G. Verbeke & C. G. B. Demétrio & C. T. S. Dias, 2017. "Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1047-1063, April.
    2. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    2. Brown, Timothy T. & Lee, Jadyn & Markarian, Sione, 2024. "The causal impact of shared decision making on pain outcomes: Gender matters," Social Science & Medicine, Elsevier, vol. 355(C).
    3. Bel, K. & Paap, R., 2014. "A Multivariate Model for Multinomial Choices," Econometric Institute Research Papers EI 2014-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Honig, Benson & Samuelsson, Mikael, 2021. "Business planning by intrapreneurs and entrepreneurs under environmental uncertainty and institutional pressure," Technovation, Elsevier, vol. 99(C).
    5. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
    6. Harald Hruschka, 2024. "Relevance of dynamic variables in multicategory choice models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(1), pages 109-133, March.
    7. Kwak, Kyuseop & Duvvuri, Sri Devi & Russell, Gary J., 2015. "An Analysis of Assortment Choice in Grocery Retailing," Journal of Retailing, Elsevier, vol. 91(1), pages 19-33.
    8. Di Tommaso, M.L. & Weeks, M., 2000. "Decision Structures and Discrete Choices: An Application to Labour Market Participation and Fertility," Cambridge Working Papers in Economics 0009, Faculty of Economics, University of Cambridge.
    9. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    10. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    11. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    12. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    13. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    14. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    15. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    17. Daniel L. McFadden, 1976. "Quantal Choice Analysis: A Survey," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 363-390, National Bureau of Economic Research, Inc.
    18. Hanemann, W. Michael & Kanninen, Barbara, 1996. "The Statistical Analysis Of Discrete-Response Cv Data," CUDARE Working Papers 25022, University of California, Berkeley, Department of Agricultural and Resource Economics.
    19. M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
    20. Özgür Asar & Ozlem Ilk, 2016. "First-order marginalised transition random effects models with probit link function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 925-942, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:585-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.