IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i2p406-415.html

Multiple change-point detection of multivariate mean vectors with the Bayesian approach

Author

Listed:
  • Cheon, Sooyoung
  • Kim, Jaehee

Abstract

Bayesian multiple change-point models are proposed for multivariate means. The models require that the data be from a multivariate normal distribution with a truncated Poisson prior for the number of change-points and conjugate priors for the distributional parameters. We apply the stochastic approximation Monte Carlo (SAMC) algorithm to the multiple change-point detection problems. Numerical results show that SAMC makes a significant improvement over RJMCMC for complex Bayesian model selection problems in change-point estimation.

Suggested Citation

  • Cheon, Sooyoung & Kim, Jaehee, 2010. "Multiple change-point detection of multivariate mean vectors with the Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 406-415, February.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:406-415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00318-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Loschi, R.H. & Cruz, F.R.B., 2005. "Extension to the product partition model: computing the probability of a change," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 255-268, February.
    2. Liang, Faming & Liu, Chuanhai & Carroll, Raymond J., 2007. "Stochastic Approximation in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 305-320, March.
    3. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    4. Venter, J. H. & Steel, S. J., 1996. "Finding multiple abrupt change points," Computational Statistics & Data Analysis, Elsevier, vol. 22(5), pages 481-504, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehee Kim & Chulwoo Jeong, 2016. "A Bayesian multiple structural change regression model with autocorrelated errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1690-1705, July.
    2. Noriah Al-Kandari & Emad-Eldin Aly, 2014. "An ANOVA-type test for multiple change points," Statistical Papers, Springer, vol. 55(4), pages 1159-1178, November.
    3. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    4. David Hallac & Peter Nystrup & Stephen Boyd, 2019. "Greedy Gaussian segmentation of multivariate time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 727-751, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liqun & Lee, Chel Hee, 2014. "Discretization-based direct random sample generation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1001-1010.
    2. Jaehee Kim & Sooyoung Cheon, 2010. "Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo," Computational Statistics, Springer, vol. 25(2), pages 215-239, June.
    3. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    4. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    5. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    6. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2019. "Modal posterior clustering motivated by Hopfield’s network," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 92-100.
    7. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    8. Ghosh, Pulak & Huang, Lan & Yu, Binbing & Tiwari, Ram C., 2009. "Semiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4073-4082, October.
    9. Jong Hee Park, 2010. "Structural Change in U.S. Presidents' Use of Force," American Journal of Political Science, John Wiley & Sons, vol. 54(3), pages 766-782, July.
    10. Yuan, Tao & Wu, Xinying & Bae, Suk Joo & Zhu, Xiaoyan, 2019. "Reliability assessment of a continuous-state fuel cell stack system with multiple degrading components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 157-164.
    11. Faming Liang & Momiao Xiong, 2013. "Bayesian Detection of Causal Rare Variants under Posterior Consistency," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    12. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    13. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    14. Liang, Faming, 2009. "On the use of stochastic approximation Monte Carlo for Monte Carlo integration," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 581-587, March.
    15. Hall, Charles B. & Ying, Jun & Kuo, Lynn & Lipton, Richard B., 2003. "Bayesian and profile likelihood change point methods for modeling cognitive function over time," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 91-109, February.
    16. Mahani, Alireza S. & Sharabiani, Mansour T.A., 2015. "SIMD parallel MCMC sampling with applications for big-data Bayesian analytics," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 75-99.
    17. Bartolucci, Al & Bae, Sejong & Singh, Karan & Griffith, H. Randall, 2009. "An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 561-571.
    18. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    19. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    20. Simon C. Smith, 2020. "Equity premium prediction and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 412-429, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:406-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.