IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v88y2015icp75-99.html

SIMD parallel MCMC sampling with applications for big-data Bayesian analytics

Author

Listed:
  • Mahani, Alireza S.
  • Sharabiani, Mansour T.A.

Abstract

Computational intensity and sequential nature of estimation techniques for Bayesian methods in statistics and machine learning, combined with their increasing applications for big data analytics, necessitate both the identification of potential opportunities to parallelize techniques such as Monte Carlo Markov Chain (MCMC) sampling, and the development of general strategies for mapping such parallel algorithms to modern CPUs in order to elicit the performance up the compute-based and/or memory-based hardware limits. Two opportunities for Single-Instruction Multiple-Data (SIMD) parallelization of MCMC sampling for probabilistic graphical models are presented. In exchangeable models with many observations such as Bayesian Generalized Linear Models (GLMs), child-node contributions to the conditional posterior of each node can be calculated concurrently. In undirected graphs with discrete-value nodes, concurrent sampling of conditionally-independent nodes can be transformed into a SIMD form. High-performance libraries with multi-threading and vectorization capabilities can be readily applied to such SIMD opportunities to gain decent speedup, while a series of high-level source-code and runtime modifications provide further performance boost by reducing parallelization overhead and increasing data locality for Non-Uniform Memory Access architectures. For big-data Bayesian GLM graphs, the end-result is a routine for evaluating the conditional posterior and its gradient vector that is 5 times faster than a naive implementation using (built-in) multi-threaded Intel MKL BLAS, and reaches within the striking distance of the memory-bandwidth-induced hardware limit. Using multi-threading for cache-friendly, fine-grained parallelization can outperform coarse-grained alternatives which are often less cache-friendly, a likely scenario in modern predictive analytics workflow such as Hierarchical Bayesian GLM, variable selection, and ensemble regression and classification. The proposed optimization strategies improve the scaling of performance with number of cores and width of vector units (applicable to many-core SIMD processors such as Intel Xeon Phi and Graphic Processing Units), resulting in cost-effectiveness, energy efficiency (‘green computing’), and higher speed on multi-core x86 processors.

Suggested Citation

  • Mahani, Alireza S. & Sharabiani, Mansour T.A., 2015. "SIMD parallel MCMC sampling with applications for big-data Bayesian analytics," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 75-99.
  • Handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:75-99
    DOI: 10.1016/j.csda.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000511
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    2. Ferreira da Silva, Adelino R., 2011. "cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 44(i04).
    3. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    4. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.
    5. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    6. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    2. Li, Song & Tso, Geoffrey K.F. & Long, Lufan, 2017. "Powered embarrassing parallel MCMC sampling in Bayesian inference, a weighted average intuition," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 11-20.
    3. Abpeykar, Shadi & Ghatee, Mehdi & Zare, Hadi, 2019. "Ensemble decision forest of RBF networks via hybrid feature clustering approach for high-dimensional data classification," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 12-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rotondi, R., 2002. "On the influence of the proposal distributions on a reversible jump MCMC algorithm applied to the detection of multiple change-points," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 633-653, September.
    2. Mahani, Alireza S. & Sharabiani, Mansour T. A., 2017. "Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(c01).
    3. White, Gentry & Porter, Michael D., 2014. "GPU accelerated MCMC for modeling terrorist activity," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 643-651.
    4. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    5. Tamara Broderick & Robert Gramacy, 2011. "Classification and Categorical Inputs with Treed Gaussian Process Models," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 244-270, July.
    6. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    7. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    9. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    10. Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
    11. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    12. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    13. Tsionas, Mike G. & Malikov, Emir & Kumbhakar, Subal C., 2020. "Endogenous dynamic efficiency in the intertemporal optimization models of firm behavior," European Journal of Operational Research, Elsevier, vol. 284(1), pages 313-324.
    14. Raphaël Douady & Shohruh Miryusupov, 2017. "Hamiltonian Flow Simulation of Rare Events," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01581894, HAL.
    15. Roy, Vivekananda, 2014. "Efficient estimation of the link function parameter in a robust Bayesian binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 87-102.
    16. Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
    17. Wu, Lang, 2007. "A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2410-2419, February.
    18. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    19. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    20. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:75-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.