IDEAS home Printed from
   My bibliography  Save this article

Estimating Bayes factors via thermodynamic integration and population MCMC


  • Calderhead, Ben
  • Girolami, Mark


A Bayesian approach to model comparison based on the integrated or marginal likelihood is considered, and applications to linear regression models and nonlinear ordinary differential equation (ODE) models are used as the setting in which to elucidate and further develop existing statistical methodology. The focus is on two methods of marginal likelihood estimation. First, a statistical failure of the widely employed Posterior Harmonic Mean estimator is highlighted. It is demonstrated that there is a systematic bias capable of significantly skewing Bayes factor estimates, which has not previously been highlighted in the literature. Second, a detailed study of the recently proposed Thermodynamic Integral estimator is presented, which characterises the error associated with its discrete form. An experimental study using analytically tractable linear regression models highlights substantial differences with recently published results regarding optimal discretisation. Finally, with the insights gained, it is demonstrated how Population MCMC and thermodynamic integration methods may be elegantly combined to estimate Bayes factors accurately enough to discriminate between nonlinear models based on systems of ODEs, which has important application in describing the behaviour of complex processes arising in a wide variety of research areas, such as Systems Biology, Computational Ecology and Chemical Engineering.

Suggested Citation

  • Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4028-4045

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    2. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607.
    3. El Adlouni, Salaheddine & Favre, Anne-Catherine & Bobee, Bernard, 2006. "Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2685-2701, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bla:jorssb:v:79:y:2017:i:3:p:695-718 is not listed on IDEAS
    2. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    3. repec:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-017-0721-7 is not listed on IDEAS
    4. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    5. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    6. Loza-Reyes, E. & Hurn, M.A. & Robinson, A., 2014. "Classification of molecular sequence data using Bayesian phylogenetic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 81-95.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4028-4045. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.