IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1450-1467.html
   My bibliography  Save this article

Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm

Author

Listed:
  • Rigat, F.
  • Mira, A.

Abstract

A novel class of interacting Markov chain Monte Carlo (MCMC) algorithms, hereby referred to as the Parallel Hierarchical Sampler (PHS), is developed and its mixing properties are assessed. PHS algorithms are modular MCMC samplers designed to produce reliable estimates for multi-modal and heavy-tailed posterior distributions. As such, PHS aims at benefitting statisticians whom, working on a wide spectrum of applications, are more focused on defining and refining models than constructing sophisticated sampling strategies. Convergence of a vanilla PHS algorithm is proved for the case of Metropolis–Hastings within-chain updates. The accuracy of this PHS kernel is compared with that of optimized single-chain and multiple-chain MCMC algorithms for multi-modal mixtures of multivariate Gaussian densities and for ‘banana-shaped’ heavy-tailed multivariate distributions. These examples show that PHS can yield a dramatic improvement in the precision of MCMC estimators over standard samplers. PHS is then applied to two realistically complex Bayesian model uncertainty scenarios. First, PHS is used to select a low number of meaningful predictors for a Gaussian linear regression model in the presence of high collinearity. Second, the posterior probability of survival trees approximated by PHS indicates that the number and size of liver metastases at the time of diagnosis are predictive of substantial differences in the survival distributions of colorectal cancer patients.

Suggested Citation

  • Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467
    DOI: 10.1016/j.csda.2011.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100418X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    2. Roberts, G. O. & Gilks, W. R., 1994. "Convergence of Adaptive Direction Sampling," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 287-298, May.
    3. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39.
    4. Ajay Jasra & David A. Stephens & Christopher C. Holmes, 2007. "Population-Based Reversible Jump Markov Chain Monte Carlo," Biometrika, Biometrika Trust, vol. 94(4), pages 787-807.
    5. Hu, Bo & Tsui, Kam-Wah, 2010. "Distributed evolutionary Monte Carlo for Bayesian computing," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 688-697, March.
    6. Gill, Jeff & Casella, George, 2004. "Dynamic Tempered Transitions for Exploring Multimodal Posterior Distributions," Political Analysis, Cambridge University Press, vol. 12(04), pages 425-443, September.
    7. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    8. Jørund Gåsemyr, 2003. "On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 159-173.
    9. Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700.
    10. A. Antoniadis & G. Grégoire & G. Nason, 1999. "Density and hazard rate estimation for right-censored data by using wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 63-84.
    11. Gray, J. Brian & Fan, Guangzhe, 2008. "Classification tree analysis using TARGET," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1362-1372, January.
    12. Craiu, Radu V. & Rosenthal, Jeffrey & Yang, Chao, 2009. "Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1454-1466.
    13. Jasra, Ajay & Doucet, Arnaud & Stephens, David A. & Holmes, Christopher C., 2008. "Interacting sequential Monte Carlo samplers for trans-dimensional simulation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1765-1791, January.
    14. Liang F. & Wong W.H., 2001. "Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 653-666, June.
    15. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    16. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    17. repec:dau:papers:123456789/6040 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:csdana:v:114:y:2017:i:c:p:26-37 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.