IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm

  • Rigat, F.
  • Mira, A.
Registered author(s):

    A novel class of interacting Markov chain Monte Carlo (MCMC) algorithms, hereby referred to as the Parallel Hierarchical Sampler (PHS), is developed and its mixing properties are assessed. PHS algorithms are modular MCMC samplers designed to produce reliable estimates for multi-modal and heavy-tailed posterior distributions. As such, PHS aims at benefitting statisticians whom, working on a wide spectrum of applications, are more focused on defining and refining models than constructing sophisticated sampling strategies. Convergence of a vanilla PHS algorithm is proved for the case of Metropolis–Hastings within-chain updates. The accuracy of this PHS kernel is compared with that of optimized single-chain and multiple-chain MCMC algorithms for multi-modal mixtures of multivariate Gaussian densities and for ‘banana-shaped’ heavy-tailed multivariate distributions. These examples show that PHS can yield a dramatic improvement in the precision of MCMC estimators over standard samplers. PHS is then applied to two realistically complex Bayesian model uncertainty scenarios. First, PHS is used to select a low number of meaningful predictors for a Gaussian linear regression model in the presence of high collinearity. Second, the posterior probability of survival trees approximated by PHS indicates that the number and size of liver metastases at the time of diagnosis are predictive of substantial differences in the survival distributions of colorectal cancer patients.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100418X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 6 ()
    Pages: 1450-1467

    as
    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Smith, M. & Kohn, R., . "Nonparametric Regression using Bayesian Variable Selection," Statistics Working Paper _009, Australian Graduate School of Management.
    2. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    3. Craiu, Radu V. & Rosenthal, Jeffrey & Yang, Chao, 2009. "Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1454-1466.
    4. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39.
    5. Jørund G�Semyr, 2003. "On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 159-173.
    6. A. Antoniadis & G. Grégoire & G. Nason, 1999. "Density and hazard rate estimation for right-censored data by using wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 63-84.
    7. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, 03.
    8. Gray, J. Brian & Fan, Guangzhe, 2008. "Classification tree analysis using TARGET," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1362-1372, January.
    9. Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700.
    10. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    11. Cappé, Olivier & Robert, Christian P. & Ryden, Tobias, 2003. "Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers," Economics Papers from University Paris Dauphine 123456789/6040, Paris Dauphine University.
    12. Jasra, Ajay & Doucet, Arnaud & Stephens, David A. & Holmes, Christopher C., 2008. "Interacting sequential Monte Carlo samplers for trans-dimensional simulation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1765-1791, January.
    13. Roberts, G. O. & Gilks, W. R., 1994. "Convergence of Adaptive Direction Sampling," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 287-298, May.
    14. Hu, Bo & Tsui, Kam-Wah, 2010. "Distributed evolutionary Monte Carlo for Bayesian computing," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 688-697, March.
    15. Liang F. & Wong W.H., 2001. "Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 653-666, June.
    16. Ajay Jasra & David A. Stephens & Christopher C. Holmes, 2007. "Population-Based Reversible Jump Markov Chain Monte Carlo," Biometrika, Biometrika Trust, vol. 94(4), pages 787-807.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.